ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifidss Unicode version

Theorem ifidss 3618
Description: A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifidss  |-  if (
ph ,  A ,  A )  C_  A

Proof of Theorem ifidss
StepHypRef Expression
1 ifssun 3617 . 2  |-  if (
ph ,  A ,  A )  C_  ( A  u.  A )
2 unidm 3347 . 2  |-  ( A  u.  A )  =  A
31, 2sseqtri 3258 1  |-  if (
ph ,  A ,  A )  C_  A
Colors of variables: wff set class
Syntax hints:    u. cun 3195    C_ wss 3197   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-if 3603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator