ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifssun Unicode version

Theorem ifssun 3590
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifssun  |-  if (
ph ,  A ,  B )  C_  ( A  u.  B )

Proof of Theorem ifssun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfif6 3577 . 2  |-  if (
ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )
2 ssrab2 3282 . . 3  |-  { x  e.  A  |  ph }  C_  A
3 ssrab2 3282 . . 3  |-  { x  e.  B  |  -.  ph }  C_  B
4 unss12 3349 . . 3  |-  ( ( { x  e.  A  |  ph }  C_  A  /\  { x  e.  B  |  -.  ph }  C_  B )  ->  ( { x  e.  A  |  ph }  u.  {
x  e.  B  |  -.  ph } )  C_  ( A  u.  B
) )
52, 3, 4mp2an 426 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  -.  ph } )  C_  ( A  u.  B )
61, 5eqsstri 3229 1  |-  if (
ph ,  A ,  B )  C_  ( A  u.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3   {crab 2489    u. cun 3168    C_ wss 3170   ifcif 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-if 3576
This theorem is referenced by:  ifidss  3591  ifelpwung  4536
  Copyright terms: Public domain W3C validator