ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifidss GIF version

Theorem ifidss 3576
Description: A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifidss if(𝜑, 𝐴, 𝐴) ⊆ 𝐴

Proof of Theorem ifidss
StepHypRef Expression
1 ifssun 3575 . 2 if(𝜑, 𝐴, 𝐴) ⊆ (𝐴𝐴)
2 unidm 3306 . 2 (𝐴𝐴) = 𝐴
31, 2sseqtri 3217 1 if(𝜑, 𝐴, 𝐴) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  cun 3155  wss 3157  ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-if 3562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator