| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifidss | GIF version | ||
| Description: A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| ifidss | ⊢ if(𝜑, 𝐴, 𝐴) ⊆ 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ifssun 3575 | . 2 ⊢ if(𝜑, 𝐴, 𝐴) ⊆ (𝐴 ∪ 𝐴) | |
| 2 | unidm 3306 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 3 | 1, 2 | sseqtri 3217 | 1 ⊢ if(𝜑, 𝐴, 𝐴) ⊆ 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ∪ cun 3155 ⊆ wss 3157 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |