![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifidss | GIF version |
Description: A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifidss | ⊢ if(𝜑, 𝐴, 𝐴) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifssun 3563 | . 2 ⊢ if(𝜑, 𝐴, 𝐴) ⊆ (𝐴 ∪ 𝐴) | |
2 | unidm 3293 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
3 | 1, 2 | sseqtri 3204 | 1 ⊢ if(𝜑, 𝐴, 𝐴) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3142 ⊆ wss 3144 ifcif 3549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-if 3550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |