ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifidss GIF version

Theorem ifidss 3587
Description: A conditional class whose two alternatives are equal is included in that alternative. With excluded middle, we can prove it is equal to it. (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifidss if(𝜑, 𝐴, 𝐴) ⊆ 𝐴

Proof of Theorem ifidss
StepHypRef Expression
1 ifssun 3586 . 2 if(𝜑, 𝐴, 𝐴) ⊆ (𝐴𝐴)
2 unidm 3317 . 2 (𝐴𝐴) = 𝐴
31, 2sseqtri 3228 1 if(𝜑, 𝐴, 𝐴) ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  cun 3165  wss 3167  ifcif 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-if 3573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator