ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidm Unicode version

Theorem unidm 3276
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
unidm  |-  ( A  u.  A )  =  A

Proof of Theorem unidm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oridm 757 . 2  |-  ( ( x  e.  A  \/  x  e.  A )  <->  x  e.  A )
21uneqri 3275 1  |-  ( A  u.  A )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2146    u. cun 3125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131
This theorem is referenced by:  unundi  3294  unundir  3295  uneqin  3384  difabs  3397  ifidss  3547  dfsn2  3603  diftpsn3  3730  unisn  3821  dfdm2  5155  fun2  5381  resasplitss  5387  xpider  6596  pm54.43  7179
  Copyright terms: Public domain W3C validator