ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidm Unicode version

Theorem unidm 3270
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
unidm  |-  ( A  u.  A )  =  A

Proof of Theorem unidm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oridm 752 . 2  |-  ( ( x  e.  A  \/  x  e.  A )  <->  x  e.  A )
21uneqri 3269 1  |-  ( A  u.  A )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141    u. cun 3119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125
This theorem is referenced by:  unundi  3288  unundir  3289  uneqin  3378  difabs  3391  ifidss  3541  dfsn2  3597  diftpsn3  3721  unisn  3812  dfdm2  5145  fun2  5371  resasplitss  5377  xpider  6584  pm54.43  7167
  Copyright terms: Public domain W3C validator