ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtri Unicode version

Theorem sseqtri 3258
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1  |-  A  C_  B
sseqtr.2  |-  B  =  C
Assertion
Ref Expression
sseqtri  |-  A  C_  C

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2  |-  A  C_  B
2 sseqtr.2 . . 3  |-  B  =  C
32sseq2i 3251 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3mpbi 145 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sseqtrri  3259  eqimssi  3280  abssi  3299  ssun2  3368  inssddif  3445  difdifdirss  3576  ifidss  3618  pwundifss  4375  unixpss  4831  0ima  5087  sbthlem7  7126  0bits  12465  ssnnctlemct  13012  prdsvallem  13300  toponsspwpwg  14690  eltg4i  14723  ntrss2  14789  isopn3  14793  tgioo  15222  dvfvalap  15349  dvcnp2cntop  15367
  Copyright terms: Public domain W3C validator