ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtri Unicode version

Theorem sseqtri 3214
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1  |-  A  C_  B
sseqtr.2  |-  B  =  C
Assertion
Ref Expression
sseqtri  |-  A  C_  C

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2  |-  A  C_  B
2 sseqtr.2 . . 3  |-  B  =  C
32sseq2i 3207 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3mpbi 145 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1364    C_ wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167
This theorem is referenced by:  sseqtrri  3215  eqimssi  3236  abssi  3255  ssun2  3324  inssddif  3401  difdifdirss  3532  ifidss  3573  pwundifss  4317  unixpss  4773  0ima  5026  sbthlem7  7024  ssnnctlemct  12606  toponsspwpwg  14201  eltg4i  14234  ntrss2  14300  isopn3  14304  tgioo  14733  dvfvalap  14860  dvcnp2cntop  14878
  Copyright terms: Public domain W3C validator