ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtri Unicode version

Theorem sseqtri 3175
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1  |-  A  C_  B
sseqtr.2  |-  B  =  C
Assertion
Ref Expression
sseqtri  |-  A  C_  C

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2  |-  A  C_  B
2 sseqtr.2 . . 3  |-  B  =  C
32sseq2i 3168 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3mpbi 144 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1343    C_ wss 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3121  df-ss 3128
This theorem is referenced by:  sseqtrri  3176  eqimssi  3197  abssi  3216  ssun2  3285  inssddif  3362  difdifdirss  3492  ifidss  3534  pwundifss  4262  unixpss  4716  0ima  4963  sbthlem7  6924  ssnnctlemct  12375  toponsspwpwg  12620  eltg4i  12655  ntrss2  12721  isopn3  12725  tgioo  13146  dvfvalap  13250  dvcnp2cntop  13263
  Copyright terms: Public domain W3C validator