ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtri Unicode version

Theorem sseqtri 3190
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1  |-  A  C_  B
sseqtr.2  |-  B  =  C
Assertion
Ref Expression
sseqtri  |-  A  C_  C

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2  |-  A  C_  B
2 sseqtr.2 . . 3  |-  B  =  C
32sseq2i 3183 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3mpbi 145 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1353    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3136  df-ss 3143
This theorem is referenced by:  sseqtrri  3191  eqimssi  3212  abssi  3231  ssun2  3300  inssddif  3377  difdifdirss  3508  ifidss  3550  pwundifss  4286  unixpss  4740  0ima  4989  sbthlem7  6962  ssnnctlemct  12447  toponsspwpwg  13525  eltg4i  13558  ntrss2  13624  isopn3  13628  tgioo  14049  dvfvalap  14153  dvcnp2cntop  14166
  Copyright terms: Public domain W3C validator