ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq12 Unicode version

Theorem ifeq12 3573
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
ifeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D )
)

Proof of Theorem ifeq12
StepHypRef Expression
1 ifeq1 3560 . 2  |-  ( A  =  B  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  C ) )
2 ifeq2 3561 . 2  |-  ( C  =  D  ->  if ( ph ,  B ,  C )  =  if ( ph ,  B ,  D ) )
31, 2sylan9eq 2246 1  |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-un 3157  df-if 3558
This theorem is referenced by:  xaddmnf1  9914
  Copyright terms: Public domain W3C validator