ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq12 Unicode version

Theorem ifeq12 3587
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
ifeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D )
)

Proof of Theorem ifeq12
StepHypRef Expression
1 ifeq1 3574 . 2  |-  ( A  =  B  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  C ) )
2 ifeq2 3575 . 2  |-  ( C  =  D  ->  if ( ph ,  B ,  C )  =  if ( ph ,  B ,  D ) )
31, 2sylan9eq 2258 1  |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   ifcif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-un 3170  df-if 3572
This theorem is referenced by:  xaddmnf1  9972
  Copyright terms: Public domain W3C validator