ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq12 Unicode version

Theorem ifeq12 3542
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
ifeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D )
)

Proof of Theorem ifeq12
StepHypRef Expression
1 ifeq1 3529 . 2  |-  ( A  =  B  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  C ) )
2 ifeq2 3530 . 2  |-  ( C  =  D  ->  if ( ph ,  B ,  C )  =  if ( ph ,  B ,  D ) )
31, 2sylan9eq 2223 1  |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-un 3125  df-if 3527
This theorem is referenced by:  xaddmnf1  9805
  Copyright terms: Public domain W3C validator