ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq12 Unicode version

Theorem ifeq12 3536
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
ifeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D )
)

Proof of Theorem ifeq12
StepHypRef Expression
1 ifeq1 3523 . 2  |-  ( A  =  B  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  C ) )
2 ifeq2 3524 . 2  |-  ( C  =  D  ->  if ( ph ,  B ,  C )  =  if ( ph ,  B ,  D ) )
31, 2sylan9eq 2219 1  |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-un 3120  df-if 3521
This theorem is referenced by:  xaddmnf1  9784
  Copyright terms: Public domain W3C validator