| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifmdc | Unicode version | ||
| Description: If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| ifmdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 |
. . . . 5
| |
| 2 | 1 | imbi1d 231 |
. . . 4
|
| 3 | df-if 3562 |
. . . . . 6
| |
| 4 | 3 | abeq2i 2307 |
. . . . 5
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | simpr 110 |
. . . . . 6
| |
| 7 | 5, 6 | orim12i 760 |
. . . . 5
|
| 8 | 4, 7 | sylbi 121 |
. . . 4
|
| 9 | 2, 8 | vtoclg 2824 |
. . 3
|
| 10 | 9 | pm2.43i 49 |
. 2
|
| 11 | df-dc 836 |
. 2
| |
| 12 | 10, 11 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-if 3562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |