Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifmdc | Unicode version |
Description: If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.) |
Ref | Expression |
---|---|
ifmdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2220 | . . . . 5 | |
2 | 1 | imbi1d 230 | . . . 4 |
3 | df-if 3506 | . . . . . 6 | |
4 | 3 | abeq2i 2268 | . . . . 5 |
5 | simpr 109 | . . . . . 6 | |
6 | simpr 109 | . . . . . 6 | |
7 | 5, 6 | orim12i 749 | . . . . 5 |
8 | 4, 7 | sylbi 120 | . . . 4 |
9 | 2, 8 | vtoclg 2772 | . . 3 |
10 | 9 | pm2.43i 49 | . 2 |
11 | df-dc 821 | . 2 DECID | |
12 | 10, 11 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 wceq 1335 wcel 2128 cif 3505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-if 3506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |