Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifmdc | Unicode version |
Description: If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.) |
Ref | Expression |
---|---|
ifmdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2233 | . . . . 5 | |
2 | 1 | imbi1d 230 | . . . 4 |
3 | df-if 3527 | . . . . . 6 | |
4 | 3 | abeq2i 2281 | . . . . 5 |
5 | simpr 109 | . . . . . 6 | |
6 | simpr 109 | . . . . . 6 | |
7 | 5, 6 | orim12i 754 | . . . . 5 |
8 | 4, 7 | sylbi 120 | . . . 4 |
9 | 2, 8 | vtoclg 2790 | . . 3 |
10 | 9 | pm2.43i 49 | . 2 |
11 | df-dc 830 | . 2 DECID | |
12 | 10, 11 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wcel 2141 cif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-if 3527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |