ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifordc Unicode version

Theorem ifordc 3564
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifordc  |-  (DECID  ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )

Proof of Theorem ifordc
StepHypRef Expression
1 exmiddc 831 . 2  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 iftrue 3531 . . . . 5  |-  ( (
ph  \/  ps )  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  A )
32orcs 730 . . . 4  |-  ( ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  A )
4 iftrue 3531 . . . 4  |-  ( ph  ->  if ( ph ,  A ,  if ( ps ,  A ,  B ) )  =  A )
53, 4eqtr4d 2206 . . 3  |-  ( ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
6 iffalse 3534 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  A ,  if ( ps ,  A ,  B ) )  =  if ( ps ,  A ,  B )
)
7 biorf 739 . . . . 5  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
87ifbid 3547 . . . 4  |-  ( -. 
ph  ->  if ( ps ,  A ,  B
)  =  if ( ( ph  \/  ps ) ,  A ,  B ) )
96, 8eqtr2d 2204 . . 3  |-  ( -. 
ph  ->  if ( (
ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B ) ) )
105, 9jaoi 711 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
111, 10syl 14 1  |-  (DECID  ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 703  DECID wdc 829    = wceq 1348   ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-if 3527
This theorem is referenced by:  nninfwlpoimlemg  7151
  Copyright terms: Public domain W3C validator