ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifordc Unicode version

Theorem ifordc 3644
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifordc  |-  (DECID  ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )

Proof of Theorem ifordc
StepHypRef Expression
1 exmiddc 841 . 2  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 iftrue 3607 . . . . 5  |-  ( (
ph  \/  ps )  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  A )
32orcs 740 . . . 4  |-  ( ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  A )
4 iftrue 3607 . . . 4  |-  ( ph  ->  if ( ph ,  A ,  if ( ps ,  A ,  B ) )  =  A )
53, 4eqtr4d 2265 . . 3  |-  ( ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
6 iffalse 3610 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  A ,  if ( ps ,  A ,  B ) )  =  if ( ps ,  A ,  B )
)
7 biorf 749 . . . . 5  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
87ifbid 3624 . . . 4  |-  ( -. 
ph  ->  if ( ps ,  A ,  B
)  =  if ( ( ph  \/  ps ) ,  A ,  B ) )
96, 8eqtr2d 2263 . . 3  |-  ( -. 
ph  ->  if ( (
ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B ) ) )
105, 9jaoi 721 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
111, 10syl 14 1  |-  (DECID  ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 713  DECID wdc 839    = wceq 1395   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  nninfwlpoimlemg  7342
  Copyright terms: Public domain W3C validator