| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifordc | Unicode version | ||
| Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ifordc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 837 |
. 2
| |
| 2 | iftrue 3567 |
. . . . 5
| |
| 3 | 2 | orcs 736 |
. . . 4
|
| 4 | iftrue 3567 |
. . . 4
| |
| 5 | 3, 4 | eqtr4d 2232 |
. . 3
|
| 6 | iffalse 3570 |
. . . 4
| |
| 7 | biorf 745 |
. . . . 5
| |
| 8 | 7 | ifbid 3583 |
. . . 4
|
| 9 | 6, 8 | eqtr2d 2230 |
. . 3
|
| 10 | 5, 9 | jaoi 717 |
. 2
|
| 11 | 1, 10 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: nninfwlpoimlemg 7250 |
| Copyright terms: Public domain | W3C validator |