| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifordc | Unicode version | ||
| Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ifordc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 838 |
. 2
| |
| 2 | iftrue 3576 |
. . . . 5
| |
| 3 | 2 | orcs 737 |
. . . 4
|
| 4 | iftrue 3576 |
. . . 4
| |
| 5 | 3, 4 | eqtr4d 2241 |
. . 3
|
| 6 | iffalse 3579 |
. . . 4
| |
| 7 | biorf 746 |
. . . . 5
| |
| 8 | 7 | ifbid 3592 |
. . . 4
|
| 9 | 6, 8 | eqtr2d 2239 |
. . 3
|
| 10 | 5, 9 | jaoi 718 |
. 2
|
| 11 | 1, 10 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 |
| This theorem is referenced by: nninfwlpoimlemg 7277 |
| Copyright terms: Public domain | W3C validator |