ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifordc Unicode version

Theorem ifordc 3611
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifordc  |-  (DECID  ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )

Proof of Theorem ifordc
StepHypRef Expression
1 exmiddc 838 . 2  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 iftrue 3576 . . . . 5  |-  ( (
ph  \/  ps )  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  A )
32orcs 737 . . . 4  |-  ( ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  A )
4 iftrue 3576 . . . 4  |-  ( ph  ->  if ( ph ,  A ,  if ( ps ,  A ,  B ) )  =  A )
53, 4eqtr4d 2241 . . 3  |-  ( ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
6 iffalse 3579 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  A ,  if ( ps ,  A ,  B ) )  =  if ( ps ,  A ,  B )
)
7 biorf 746 . . . . 5  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
87ifbid 3592 . . . 4  |-  ( -. 
ph  ->  if ( ps ,  A ,  B
)  =  if ( ( ph  \/  ps ) ,  A ,  B ) )
96, 8eqtr2d 2239 . . 3  |-  ( -. 
ph  ->  if ( (
ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B ) ) )
105, 9jaoi 718 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
111, 10syl 14 1  |-  (DECID  ph  ->  if ( ( ph  \/  ps ) ,  A ,  B )  =  if ( ph ,  A ,  if ( ps ,  A ,  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    = wceq 1373   ifcif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-if 3572
This theorem is referenced by:  nninfwlpoimlemg  7277
  Copyright terms: Public domain W3C validator