ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclg Unicode version

Theorem vtoclg 2820
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
Hypotheses
Ref Expression
vtoclg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclg.2  |-  ph
Assertion
Ref Expression
vtoclg  |-  ( A  e.  V  ->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem vtoclg
StepHypRef Expression
1 nfcv 2336 . 2  |-  F/_ x A
2 nfv 1539 . 2  |-  F/ x ps
3 vtoclg.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclg.2 . 2  |-  ph
51, 2, 3, 4vtoclgf 2818 1  |-  ( A  e.  V  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  vtoclbg  2821  ceqex  2887  mo2icl  2939  nelrdva  2967  sbctt  3052  sbcnestgf  3132  csbing  3366  ifmdc  3597  prnzg  3742  sneqrg  3788  unisng  3852  csbopabg  4107  trss  4136  inex1g  4165  ssexg  4168  pwexg  4209  prexg  4240  opth  4266  ordelord  4412  uniexg  4470  vtoclr  4707  resieq  4952  csbima12g  5026  dmsnsnsng  5143  iotaexab  5233  iota5  5236  csbiotag  5247  funmo  5269  fconstg  5450  funfveu  5567  funbrfv  5595  fnbrfvb  5597  fvelimab  5613  ssimaexg  5619  fvelrn  5689  isoselem  5863  csbriotag  5886  csbov123g  5956  ovg  6057  tfrexlem  6387  rdg0g  6441  ensn1g  6851  fundmeng  6861  xpdom2g  6886  phplem3g  6912  prcdnql  7544  prcunqu  7545  prdisj  7552  shftvalg  10980  shftval4g  10981  climshft  11447  telfsumo  11609  fsumparts  11613  lcmgcdlem  12215  fiinopn  14172  bdzfauscl  15382  bdinex1g  15393  bdssexg  15396  bj-prexg  15403  bj-uniexg  15410
  Copyright terms: Public domain W3C validator