ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclg Unicode version

Theorem vtoclg 2833
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
Hypotheses
Ref Expression
vtoclg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclg.2  |-  ph
Assertion
Ref Expression
vtoclg  |-  ( A  e.  V  ->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem vtoclg
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ x A
2 nfv 1551 . 2  |-  F/ x ps
3 vtoclg.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclg.2 . 2  |-  ph
51, 2, 3, 4vtoclgf 2831 1  |-  ( A  e.  V  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  vtoclbg  2834  ceqex  2900  mo2icl  2952  nelrdva  2980  sbctt  3065  sbcnestgf  3145  csbing  3380  ifmdc  3612  prnzg  3757  sneqrg  3803  unisng  3867  csbopabg  4123  trss  4152  inex1g  4181  ssexg  4184  pwexg  4225  prexg  4256  opth  4282  ordelord  4429  uniexg  4487  vtoclr  4724  resieq  4970  csbima12g  5044  dmsnsnsng  5161  iotaexab  5251  iota5  5254  csbiotag  5265  funmo  5287  fconstg  5474  funfveu  5591  funbrfv  5619  fnbrfvb  5621  fvelimab  5637  ssimaexg  5643  fvelrn  5713  isoselem  5891  csbriotag  5914  csbov123g  5985  ovg  6087  tfrexlem  6422  rdg0g  6476  ensn1g  6891  fundmeng  6901  xpdom2g  6929  phplem3g  6955  prcdnql  7599  prcunqu  7600  prdisj  7607  shftvalg  11180  shftval4g  11181  climshft  11648  telfsumo  11810  fsumparts  11814  lcmgcdlem  12432  fiinopn  14509  bdzfauscl  15863  bdinex1g  15874  bdssexg  15877  bj-prexg  15884  bj-uniexg  15891
  Copyright terms: Public domain W3C validator