ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclg Unicode version

Theorem vtoclg 2824
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
Hypotheses
Ref Expression
vtoclg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclg.2  |-  ph
Assertion
Ref Expression
vtoclg  |-  ( A  e.  V  ->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem vtoclg
StepHypRef Expression
1 nfcv 2339 . 2  |-  F/_ x A
2 nfv 1542 . 2  |-  F/ x ps
3 vtoclg.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclg.2 . 2  |-  ph
51, 2, 3, 4vtoclgf 2822 1  |-  ( A  e.  V  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  vtoclbg  2825  ceqex  2891  mo2icl  2943  nelrdva  2971  sbctt  3056  sbcnestgf  3136  csbing  3370  ifmdc  3601  prnzg  3746  sneqrg  3792  unisng  3856  csbopabg  4111  trss  4140  inex1g  4169  ssexg  4172  pwexg  4213  prexg  4244  opth  4270  ordelord  4416  uniexg  4474  vtoclr  4711  resieq  4956  csbima12g  5030  dmsnsnsng  5147  iotaexab  5237  iota5  5240  csbiotag  5251  funmo  5273  fconstg  5454  funfveu  5571  funbrfv  5599  fnbrfvb  5601  fvelimab  5617  ssimaexg  5623  fvelrn  5693  isoselem  5867  csbriotag  5890  csbov123g  5960  ovg  6062  tfrexlem  6392  rdg0g  6446  ensn1g  6856  fundmeng  6866  xpdom2g  6891  phplem3g  6917  prcdnql  7551  prcunqu  7552  prdisj  7559  shftvalg  11001  shftval4g  11002  climshft  11469  telfsumo  11631  fsumparts  11635  lcmgcdlem  12245  fiinopn  14240  bdzfauscl  15536  bdinex1g  15547  bdssexg  15550  bj-prexg  15557  bj-uniexg  15564
  Copyright terms: Public domain W3C validator