ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclg Unicode version

Theorem vtoclg 2861
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
Hypotheses
Ref Expression
vtoclg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclg.2  |-  ph
Assertion
Ref Expression
vtoclg  |-  ( A  e.  V  ->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem vtoclg
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ x A
2 nfv 1574 . 2  |-  F/ x ps
3 vtoclg.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclg.2 . 2  |-  ph
51, 2, 3, 4vtoclgf 2859 1  |-  ( A  e.  V  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  vtoclbg  2862  ceqex  2930  mo2icl  2982  nelrdva  3010  sbctt  3095  sbcnestgf  3176  csbing  3411  ifmdc  3645  prnzg  3792  sneqrg  3840  unisng  3905  csbopabg  4162  trss  4191  inex1g  4220  ssexg  4223  pwexg  4264  prexg  4295  opth  4323  ordelord  4472  uniexg  4530  vtoclr  4767  resieq  5015  csbima12g  5089  dmsnsnsng  5206  iotaexab  5297  iota5  5300  csbiotag  5311  funmo  5333  fconstg  5522  funfveu  5640  funbrfv  5670  fnbrfvb  5672  fvelimab  5690  ssimaexg  5696  fvelrn  5766  isoselem  5944  csbriotag  5968  csbov123g  6040  ovg  6144  tfrexlem  6480  rdg0g  6534  ensn1g  6949  fundmeng  6960  xpdom2g  6991  phplem3g  7017  prcdnql  7671  prcunqu  7672  prdisj  7679  shftvalg  11347  shftval4g  11348  climshft  11815  telfsumo  11977  fsumparts  11981  lcmgcdlem  12599  fiinopn  14678  bdzfauscl  16253  bdinex1g  16264  bdssexg  16267  bj-prexg  16274  bj-uniexg  16281
  Copyright terms: Public domain W3C validator