ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0imm Unicode version

Theorem iin0imm 4128
Description: An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0imm  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  (/)  =  (/) )
Distinct variable groups:    y, A    x, A

Proof of Theorem iin0imm
StepHypRef Expression
1 iinconstm 3858 1  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  (/)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   E.wex 1472    e. wcel 2128   (/)c0 3394   |^|_ciin 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-iin 3852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator