ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0imm Unicode version

Theorem iin0imm 4228
Description: An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0imm  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  (/)  =  (/) )
Distinct variable groups:    y, A    x, A

Proof of Theorem iin0imm
StepHypRef Expression
1 iinconstm 3950 1  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  (/)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   E.wex 1516    e. wcel 2178   (/)c0 3468   |^|_ciin 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-iin 3944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator