ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0imm Unicode version

Theorem iin0imm 4201
Description: An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0imm  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  (/)  =  (/) )
Distinct variable groups:    y, A    x, A

Proof of Theorem iin0imm
StepHypRef Expression
1 iinconstm 3925 1  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  (/)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506    e. wcel 2167   (/)c0 3450   |^|_ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-iin 3919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator