ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0imm Unicode version

Theorem iin0imm 4147
Description: An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0imm  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  (/)  =  (/) )
Distinct variable groups:    y, A    x, A

Proof of Theorem iin0imm
StepHypRef Expression
1 iinconstm 3875 1  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  (/)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E.wex 1480    e. wcel 2136   (/)c0 3409   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator