ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinconstm Unicode version

Theorem iinconstm 3935
Description: Indexed intersection of a constant class, i.e. where  B does not depend on  x. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
iinconstm  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  B  =  B )
Distinct variable groups:    x, A    x, B    y, A
Allowed substitution hint:    B( y)

Proof of Theorem iinconstm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . 4  |-  z  e. 
_V
2 eliin 3931 . . . 4  |-  ( z  e.  _V  ->  (
z  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  z  e.  B ) )
31, 2ax-mp 5 . . 3  |-  ( z  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  z  e.  B )
4 r19.3rmv 3550 . . 3  |-  ( E. y  y  e.  A  ->  ( z  e.  B  <->  A. x  e.  A  z  e.  B ) )
53, 4bitr4id 199 . 2  |-  ( E. y  y  e.  A  ->  ( z  e.  |^|_ x  e.  A  B  <->  z  e.  B ) )
65eqrdv 2202 1  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   A.wral 2483   _Vcvv 2771   |^|_ciin 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-iin 3929
This theorem is referenced by:  iin0imm  4211
  Copyright terms: Public domain W3C validator