ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinconstm Unicode version

Theorem iinconstm 3925
Description: Indexed intersection of a constant class, i.e. where  B does not depend on  x. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
iinconstm  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  B  =  B )
Distinct variable groups:    x, A    x, B    y, A
Allowed substitution hint:    B( y)

Proof of Theorem iinconstm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . 4  |-  z  e. 
_V
2 eliin 3921 . . . 4  |-  ( z  e.  _V  ->  (
z  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  z  e.  B ) )
31, 2ax-mp 5 . . 3  |-  ( z  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  z  e.  B )
4 r19.3rmv 3541 . . 3  |-  ( E. y  y  e.  A  ->  ( z  e.  B  <->  A. x  e.  A  z  e.  B ) )
53, 4bitr4id 199 . 2  |-  ( E. y  y  e.  A  ->  ( z  e.  |^|_ x  e.  A  B  <->  z  e.  B ) )
65eqrdv 2194 1  |-  ( E. y  y  e.  A  -> 
|^|_ x  e.  A  B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   _Vcvv 2763   |^|_ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-iin 3919
This theorem is referenced by:  iin0imm  4201
  Copyright terms: Public domain W3C validator