Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iin0imm | GIF version |
Description: An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
Ref | Expression |
---|---|
iin0imm | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinconstm 3858 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∃wex 1472 ∈ wcel 2128 ∅c0 3394 ∩ ciin 3850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-iin 3852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |