ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0imm GIF version

Theorem iin0imm 4170
Description: An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0imm (∃𝑦 𝑦𝐴 𝑥𝐴 ∅ = ∅)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴

Proof of Theorem iin0imm
StepHypRef Expression
1 iinconstm 3897 1 (∃𝑦 𝑦𝐴 𝑥𝐴 ∅ = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1492  wcel 2148  c0 3424   ciin 3889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-iin 3891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator