ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0r Unicode version

Theorem iin0r 4252
Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0r  |-  ( |^|_ x  e.  A  (/)  =  (/)  ->  A  =/=  (/) )
Distinct variable group:    x, A

Proof of Theorem iin0r
StepHypRef Expression
1 0ex 4210 . . . . 5  |-  (/)  e.  _V
2 n0i 3497 . . . . 5  |-  ( (/)  e.  _V  ->  -.  _V  =  (/) )
31, 2ax-mp 5 . . . 4  |-  -.  _V  =  (/)
4 0iin 4023 . . . . 5  |-  |^|_ x  e.  (/)  (/)  =  _V
54eqeq1i 2237 . . . 4  |-  ( |^|_ x  e.  (/)  (/)  =  (/)  <->  _V  =  (/) )
63, 5mtbir 675 . . 3  |-  -.  |^|_ x  e.  (/)  (/)  =  (/)
7 iineq1 3978 . . . 4  |-  ( A  =  (/)  ->  |^|_ x  e.  A  (/)  =  |^|_ x  e.  (/)  (/) )
87eqeq1d 2238 . . 3  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  (/)  =  (/)  <->  |^|_ x  e.  (/)  (/)  =  (/) ) )
96, 8mtbiri 679 . 2  |-  ( A  =  (/)  ->  -.  |^|_ x  e.  A  (/)  =  (/) )
109necon2ai 2454 1  |-  ( |^|_ x  e.  A  (/)  =  (/)  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799   (/)c0 3491   |^|_ciin 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4209
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-v 2801  df-dif 3199  df-nul 3492  df-iin 3967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator