| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iin0r | Unicode version | ||
| Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
| Ref | Expression |
|---|---|
| iin0r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4170 |
. . . . 5
| |
| 2 | n0i 3465 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | 0iin 3985 |
. . . . 5
| |
| 5 | 4 | eqeq1i 2212 |
. . . 4
|
| 6 | 3, 5 | mtbir 672 |
. . 3
|
| 7 | iineq1 3940 |
. . . 4
| |
| 8 | 7 | eqeq1d 2213 |
. . 3
|
| 9 | 6, 8 | mtbiri 676 |
. 2
|
| 10 | 9 | necon2ai 2429 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-nul 4169 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-v 2773 df-dif 3167 df-nul 3460 df-iin 3929 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |