| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iin0r | Unicode version | ||
| Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
| Ref | Expression |
|---|---|
| iin0r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4161 |
. . . . 5
| |
| 2 | n0i 3457 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | 0iin 3976 |
. . . . 5
| |
| 5 | 4 | eqeq1i 2204 |
. . . 4
|
| 6 | 3, 5 | mtbir 672 |
. . 3
|
| 7 | iineq1 3931 |
. . . 4
| |
| 8 | 7 | eqeq1d 2205 |
. . 3
|
| 9 | 6, 8 | mtbiri 676 |
. 2
|
| 10 | 9 | necon2ai 2421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4160 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-nul 3452 df-iin 3920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |