| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iin0r | Unicode version | ||
| Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
| Ref | Expression |
|---|---|
| iin0r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4182 |
. . . . 5
| |
| 2 | n0i 3470 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | 0iin 3995 |
. . . . 5
| |
| 5 | 4 | eqeq1i 2214 |
. . . 4
|
| 6 | 3, 5 | mtbir 673 |
. . 3
|
| 7 | iineq1 3950 |
. . . 4
| |
| 8 | 7 | eqeq1d 2215 |
. . 3
|
| 9 | 6, 8 | mtbiri 677 |
. 2
|
| 10 | 9 | necon2ai 2431 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4181 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3172 df-nul 3465 df-iin 3939 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |