ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0r Unicode version

Theorem iin0r 4153
Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0r  |-  ( |^|_ x  e.  A  (/)  =  (/)  ->  A  =/=  (/) )
Distinct variable group:    x, A

Proof of Theorem iin0r
StepHypRef Expression
1 0ex 4114 . . . . 5  |-  (/)  e.  _V
2 n0i 3419 . . . . 5  |-  ( (/)  e.  _V  ->  -.  _V  =  (/) )
31, 2ax-mp 5 . . . 4  |-  -.  _V  =  (/)
4 0iin 3929 . . . . 5  |-  |^|_ x  e.  (/)  (/)  =  _V
54eqeq1i 2178 . . . 4  |-  ( |^|_ x  e.  (/)  (/)  =  (/)  <->  _V  =  (/) )
63, 5mtbir 666 . . 3  |-  -.  |^|_ x  e.  (/)  (/)  =  (/)
7 iineq1 3885 . . . 4  |-  ( A  =  (/)  ->  |^|_ x  e.  A  (/)  =  |^|_ x  e.  (/)  (/) )
87eqeq1d 2179 . . 3  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  (/)  =  (/)  <->  |^|_ x  e.  (/)  (/)  =  (/) ) )
96, 8mtbiri 670 . 2  |-  ( A  =  (/)  ->  -.  |^|_ x  e.  A  (/)  =  (/) )
109necon2ai 2394 1  |-  ( |^|_ x  e.  A  (/)  =  (/)  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    e. wcel 2141    =/= wne 2340   _Vcvv 2730   (/)c0 3414   |^|_ciin 3872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4113
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-v 2732  df-dif 3123  df-nul 3415  df-iin 3874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator