ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0r Unicode version

Theorem iin0r 4148
Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0r  |-  ( |^|_ x  e.  A  (/)  =  (/)  ->  A  =/=  (/) )
Distinct variable group:    x, A

Proof of Theorem iin0r
StepHypRef Expression
1 0ex 4109 . . . . 5  |-  (/)  e.  _V
2 n0i 3414 . . . . 5  |-  ( (/)  e.  _V  ->  -.  _V  =  (/) )
31, 2ax-mp 5 . . . 4  |-  -.  _V  =  (/)
4 0iin 3924 . . . . 5  |-  |^|_ x  e.  (/)  (/)  =  _V
54eqeq1i 2173 . . . 4  |-  ( |^|_ x  e.  (/)  (/)  =  (/)  <->  _V  =  (/) )
63, 5mtbir 661 . . 3  |-  -.  |^|_ x  e.  (/)  (/)  =  (/)
7 iineq1 3880 . . . 4  |-  ( A  =  (/)  ->  |^|_ x  e.  A  (/)  =  |^|_ x  e.  (/)  (/) )
87eqeq1d 2174 . . 3  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  (/)  =  (/)  <->  |^|_ x  e.  (/)  (/)  =  (/) ) )
96, 8mtbiri 665 . 2  |-  ( A  =  (/)  ->  -.  |^|_ x  e.  A  (/)  =  (/) )
109necon2ai 2390 1  |-  ( |^|_ x  e.  A  (/)  =  (/)  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    e. wcel 2136    =/= wne 2336   _Vcvv 2726   (/)c0 3409   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-nul 3410  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator