ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0r Unicode version

Theorem iin0r 4224
Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0r  |-  ( |^|_ x  e.  A  (/)  =  (/)  ->  A  =/=  (/) )
Distinct variable group:    x, A

Proof of Theorem iin0r
StepHypRef Expression
1 0ex 4182 . . . . 5  |-  (/)  e.  _V
2 n0i 3470 . . . . 5  |-  ( (/)  e.  _V  ->  -.  _V  =  (/) )
31, 2ax-mp 5 . . . 4  |-  -.  _V  =  (/)
4 0iin 3995 . . . . 5  |-  |^|_ x  e.  (/)  (/)  =  _V
54eqeq1i 2214 . . . 4  |-  ( |^|_ x  e.  (/)  (/)  =  (/)  <->  _V  =  (/) )
63, 5mtbir 673 . . 3  |-  -.  |^|_ x  e.  (/)  (/)  =  (/)
7 iineq1 3950 . . . 4  |-  ( A  =  (/)  ->  |^|_ x  e.  A  (/)  =  |^|_ x  e.  (/)  (/) )
87eqeq1d 2215 . . 3  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  (/)  =  (/)  <->  |^|_ x  e.  (/)  (/)  =  (/) ) )
96, 8mtbiri 677 . 2  |-  ( A  =  (/)  ->  -.  |^|_ x  e.  A  (/)  =  (/) )
109necon2ai 2431 1  |-  ( |^|_ x  e.  A  (/)  =  (/)  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373    e. wcel 2177    =/= wne 2377   _Vcvv 2773   (/)c0 3464   |^|_ciin 3937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4181
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3172  df-nul 3465  df-iin 3939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator