ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif2 Unicode version

Theorem indif2 3407
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2  |-  ( A  i^i  ( B  \  C ) )  =  ( ( A  i^i  B )  \  C )

Proof of Theorem indif2
StepHypRef Expression
1 inass 3373 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( A  i^i  ( B  i^i  ( _V  \  C ) ) )
2 invdif 3405 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  B )  \  C )
3 invdif 3405 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
43ineq2i 3361 . 2  |-  ( A  i^i  ( B  i^i  ( _V  \  C ) ) )  =  ( A  i^i  ( B 
\  C ) )
51, 2, 43eqtr3ri 2226 1  |-  ( A  i^i  ( B  \  C ) )  =  ( ( A  i^i  B )  \  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2763    \ cdif 3154    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163
This theorem is referenced by:  indif1  3408  indifcom  3409  difopn  14344
  Copyright terms: Public domain W3C validator