ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif2 Unicode version

Theorem indif2 3381
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2  |-  ( A  i^i  ( B  \  C ) )  =  ( ( A  i^i  B )  \  C )

Proof of Theorem indif2
StepHypRef Expression
1 inass 3347 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( A  i^i  ( B  i^i  ( _V  \  C ) ) )
2 invdif 3379 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  B )  \  C )
3 invdif 3379 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
43ineq2i 3335 . 2  |-  ( A  i^i  ( B  i^i  ( _V  \  C ) ) )  =  ( A  i^i  ( B 
\  C ) )
51, 2, 43eqtr3ri 2207 1  |-  ( A  i^i  ( B  \  C ) )  =  ( ( A  i^i  B )  \  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2739    \ cdif 3128    i^i cin 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-in 3137
This theorem is referenced by:  indif1  3382  indifcom  3383  difopn  13693
  Copyright terms: Public domain W3C validator