ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif1 Unicode version

Theorem indif1 3367
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )

Proof of Theorem indif1
StepHypRef Expression
1 indif2 3366 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( B  i^i  A )  \  C )
2 incom 3314 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  B
)
3 incom 3314 . . 3  |-  ( B  i^i  A )  =  ( A  i^i  B
)
43difeq1i 3236 . 2  |-  ( ( B  i^i  A ) 
\  C )  =  ( ( A  i^i  B )  \  C )
51, 2, 43eqtr3i 2194 1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    \ cdif 3113    i^i cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-dif 3118  df-in 3122
This theorem is referenced by:  resdifcom  4902  resdmdfsn  4927
  Copyright terms: Public domain W3C validator