ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif1 Unicode version

Theorem indif1 3378
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )

Proof of Theorem indif1
StepHypRef Expression
1 indif2 3377 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( B  i^i  A )  \  C )
2 incom 3325 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  B
)
3 incom 3325 . . 3  |-  ( B  i^i  A )  =  ( A  i^i  B
)
43difeq1i 3247 . 2  |-  ( ( B  i^i  A ) 
\  C )  =  ( ( A  i^i  B )  \  C )
51, 2, 43eqtr3i 2204 1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    \ cdif 3124    i^i cin 3126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462  df-v 2737  df-dif 3129  df-in 3133
This theorem is referenced by:  resdifcom  4918  resdmdfsn  4943
  Copyright terms: Public domain W3C validator