ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif1 Unicode version

Theorem indif1 3392
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )

Proof of Theorem indif1
StepHypRef Expression
1 indif2 3391 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( B  i^i  A )  \  C )
2 incom 3339 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  B
)
3 incom 3339 . . 3  |-  ( B  i^i  A )  =  ( A  i^i  B
)
43difeq1i 3261 . 2  |-  ( ( B  i^i  A ) 
\  C )  =  ( ( A  i^i  B )  \  C )
51, 2, 43eqtr3i 2216 1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1363    \ cdif 3138    i^i cin 3140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rab 2474  df-v 2751  df-dif 3143  df-in 3147
This theorem is referenced by:  resdifcom  4937  resdmdfsn  4962
  Copyright terms: Public domain W3C validator