ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif1 Unicode version

Theorem indif1 3404
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )

Proof of Theorem indif1
StepHypRef Expression
1 indif2 3403 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( B  i^i  A )  \  C )
2 incom 3351 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  B
)
3 incom 3351 . . 3  |-  ( B  i^i  A )  =  ( A  i^i  B
)
43difeq1i 3273 . 2  |-  ( ( B  i^i  A ) 
\  C )  =  ( ( A  i^i  B )  \  C )
51, 2, 43eqtr3i 2222 1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    \ cdif 3150    i^i cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159
This theorem is referenced by:  resdifcom  4960  resdmdfsn  4985
  Copyright terms: Public domain W3C validator