![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3ri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
Ref | Expression |
---|---|
3eqtr3i.1 |
![]() ![]() ![]() ![]() |
3eqtr3i.2 |
![]() ![]() ![]() ![]() |
3eqtr3i.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr3ri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.3 |
. 2
![]() ![]() ![]() ![]() | |
2 | 3eqtr3i.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 3eqtr3i.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtr3i 2216 |
. 2
![]() ![]() ![]() ![]() |
5 | 1, 4 | eqtr3i 2216 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: indif2 3404 resdm2 5157 co01 5181 cocnvres 5191 undifdc 6982 1mhlfehlf 9203 rei 11046 resqrexlemover 11157 cos1bnd 11905 6gcd4e2 12135 3lcm2e6 12301 cosq23lt0 15009 sincos4thpi 15016 sincos6thpi 15018 cosq34lt1 15026 |
Copyright terms: Public domain | W3C validator |