![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3ri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
Ref | Expression |
---|---|
3eqtr3i.1 |
![]() ![]() ![]() ![]() |
3eqtr3i.2 |
![]() ![]() ![]() ![]() |
3eqtr3i.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr3ri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.3 |
. 2
![]() ![]() ![]() ![]() | |
2 | 3eqtr3i.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 3eqtr3i.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtr3i 2117 |
. 2
![]() ![]() ![]() ![]() |
5 | 1, 4 | eqtr3i 2117 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-4 1452 ax-17 1471 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 |
This theorem is referenced by: indif2 3259 resdm2 4955 co01 4979 cocnvres 4989 undifdc 6714 1mhlfehlf 8732 rei 10464 resqrexlemover 10574 cos1bnd 11214 6gcd4e2 11426 3lcm2e6 11581 |
Copyright terms: Public domain | W3C validator |