| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2i | Unicode version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 |
|
| Ref | Expression |
|---|---|
| ineq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 |
. 2
| |
| 2 | ineq2 3376 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: in4 3397 inindir 3399 indif2 3425 difun1 3441 dfrab3ss 3459 dfif3 3593 intunsn 3937 rint0 3938 riin0 4013 res0 4982 resres 4990 resundi 4991 resindi 4993 inres 4995 resiun2 4998 resopab 5022 dfse2 5074 dminxp 5146 imainrect 5147 resdmres 5193 funimacnv 5369 unfiin 7049 sbthlemi5 7089 dmaddpi 7473 dmmulpi 7474 fsumiun 11903 ressval2 13013 ressval3d 13019 lgsquadlem3 15671 |
| Copyright terms: Public domain | W3C validator |