| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ineq2i | Unicode version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| ineq1i.1 | 
 | 
| Ref | Expression | 
|---|---|
| ineq2i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineq1i.1 | 
. 2
 | |
| 2 | ineq2 3358 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 | 
| This theorem is referenced by: in4 3379 inindir 3381 indif2 3407 difun1 3423 dfrab3ss 3441 dfif3 3574 intunsn 3912 rint0 3913 riin0 3988 res0 4950 resres 4958 resundi 4959 resindi 4961 inres 4963 resiun2 4966 resopab 4990 dfse2 5042 dminxp 5114 imainrect 5115 resdmres 5161 funimacnv 5334 unfiin 6987 sbthlemi5 7027 dmaddpi 7392 dmmulpi 7393 fsumiun 11642 ressval2 12744 ressval3d 12750 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |