ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2i Unicode version

Theorem ineq2i 3320
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Hypothesis
Ref Expression
ineq1i.1  |-  A  =  B
Assertion
Ref Expression
ineq2i  |-  ( C  i^i  A )  =  ( C  i^i  B
)

Proof of Theorem ineq2i
StepHypRef Expression
1 ineq1i.1 . 2  |-  A  =  B
2 ineq2 3317 . 2  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )
31, 2ax-mp 5 1  |-  ( C  i^i  A )  =  ( C  i^i  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    i^i cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122
This theorem is referenced by:  in4  3338  inindir  3340  indif2  3366  difun1  3382  dfrab3ss  3400  dfif3  3533  intunsn  3862  rint0  3863  riin0  3937  res0  4888  resres  4896  resundi  4897  resindi  4899  inres  4901  resiun2  4904  resopab  4928  dfse2  4977  dminxp  5048  imainrect  5049  resdmres  5095  funimacnv  5264  unfiin  6891  sbthlemi5  6926  dmaddpi  7266  dmmulpi  7267  fsumiun  11418
  Copyright terms: Public domain W3C validator