![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ineq2i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ineq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | ineq2 3355 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 |
This theorem is referenced by: in4 3376 inindir 3378 indif2 3404 difun1 3420 dfrab3ss 3438 dfif3 3571 intunsn 3909 rint0 3910 riin0 3985 res0 4947 resres 4955 resundi 4956 resindi 4958 inres 4960 resiun2 4963 resopab 4987 dfse2 5039 dminxp 5111 imainrect 5112 resdmres 5158 funimacnv 5331 unfiin 6984 sbthlemi5 7022 dmaddpi 7387 dmmulpi 7388 fsumiun 11623 ressval2 12687 ressval3d 12693 lgsquadlem3 15236 |
Copyright terms: Public domain | W3C validator |