| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2i | Unicode version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 |
|
| Ref | Expression |
|---|---|
| ineq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 |
. 2
| |
| 2 | ineq2 3359 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: in4 3380 inindir 3382 indif2 3408 difun1 3424 dfrab3ss 3442 dfif3 3575 intunsn 3913 rint0 3914 riin0 3989 res0 4951 resres 4959 resundi 4960 resindi 4962 inres 4964 resiun2 4967 resopab 4991 dfse2 5043 dminxp 5115 imainrect 5116 resdmres 5162 funimacnv 5335 unfiin 6996 sbthlemi5 7036 dmaddpi 7409 dmmulpi 7410 fsumiun 11659 ressval2 12769 ressval3d 12775 lgsquadlem3 15404 |
| Copyright terms: Public domain | W3C validator |