![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ineq2i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ineq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | ineq2 3195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-in 3005 |
This theorem is referenced by: in4 3216 inindir 3218 indif2 3243 difun1 3259 dfrab3ss 3277 dfif3 3406 intunsn 3726 rint0 3727 riin0 3801 res0 4717 resres 4725 resundi 4726 resindi 4728 inres 4730 resiun2 4733 resopab 4756 dfse2 4805 dminxp 4875 imainrect 4876 resdmres 4922 funimacnv 5090 unfiin 6636 sbthlemi5 6670 dmaddpi 6884 dmmulpi 6885 fsumiun 10871 |
Copyright terms: Public domain | W3C validator |