| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2i | Unicode version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 |
|
| Ref | Expression |
|---|---|
| ineq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 |
. 2
| |
| 2 | ineq2 3399 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: in4 3420 inindir 3422 indif2 3448 difun1 3464 dfrab3ss 3482 dfif3 3616 intunsn 3961 rint0 3962 riin0 4037 res0 5009 resres 5017 resundi 5018 resindi 5020 inres 5022 resiun2 5025 resopab 5049 dfse2 5101 dminxp 5173 imainrect 5174 resdmres 5220 funimacnv 5397 unfiin 7088 sbthlemi5 7128 dmaddpi 7512 dmmulpi 7513 fsumiun 11988 ressval2 13099 ressval3d 13105 lgsquadlem3 15758 |
| Copyright terms: Public domain | W3C validator |