Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq2i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 |
Ref | Expression |
---|---|
ineq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 | |
2 | ineq2 3302 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cin 3101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 |
This theorem is referenced by: in4 3323 inindir 3325 indif2 3351 difun1 3367 dfrab3ss 3385 dfif3 3518 intunsn 3845 rint0 3846 riin0 3920 res0 4870 resres 4878 resundi 4879 resindi 4881 inres 4883 resiun2 4886 resopab 4910 dfse2 4959 dminxp 5030 imainrect 5031 resdmres 5077 funimacnv 5246 unfiin 6870 sbthlemi5 6905 dmaddpi 7245 dmmulpi 7246 fsumiun 11374 |
Copyright terms: Public domain | W3C validator |