ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif Unicode version

Theorem indif 3447
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
indif  |-  ( A  i^i  ( A  \  B ) )  =  ( A  \  B
)

Proof of Theorem indif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 anabs5 573 . . 3  |-  ( ( x  e.  A  /\  ( x  e.  A  /\  -.  x  e.  B
) )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2 elin 3387 . . . 4  |-  ( x  e.  ( A  i^i  ( A  \  B ) )  <->  ( x  e.  A  /\  x  e.  ( A  \  B
) ) )
3 eldif 3206 . . . . 5  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
43anbi2i 457 . . . 4  |-  ( ( x  e.  A  /\  x  e.  ( A  \  B ) )  <->  ( x  e.  A  /\  (
x  e.  A  /\  -.  x  e.  B
) ) )
52, 4bitri 184 . . 3  |-  ( x  e.  ( A  i^i  ( A  \  B ) )  <->  ( x  e.  A  /\  ( x  e.  A  /\  -.  x  e.  B )
) )
61, 5, 33bitr4i 212 . 2  |-  ( x  e.  ( A  i^i  ( A  \  B ) )  <->  x  e.  ( A  \  B ) )
76eqriv 2226 1  |-  ( A  i^i  ( A  \  B ) )  =  ( A  \  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1395    e. wcel 2200    \ cdif 3194    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203
This theorem is referenced by:  resdif  5594
  Copyright terms: Public domain W3C validator