ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difopn Unicode version

Theorem difopn 14428
Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
difopn  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( A  \  B
)  e.  J )

Proof of Theorem difopn
StepHypRef Expression
1 elssuni 3868 . . . . . 6  |-  ( A  e.  J  ->  A  C_ 
U. J )
2 iscld.1 . . . . . 6  |-  X  = 
U. J
31, 2sseqtrrdi 3233 . . . . 5  |-  ( A  e.  J  ->  A  C_  X )
43adantr 276 . . . 4  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  ->  A  C_  X )
5 df-ss 3170 . . . 4  |-  ( A 
C_  X  <->  ( A  i^i  X )  =  A )
64, 5sylib 122 . . 3  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( A  i^i  X
)  =  A )
76difeq1d 3281 . 2  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( ( A  i^i  X )  \  B )  =  ( A  \  B ) )
8 indif2 3408 . . 3  |-  ( A  i^i  ( X  \  B ) )  =  ( ( A  i^i  X )  \  B )
9 cldrcl 14422 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  J  e.  Top )
109adantl 277 . . . 4  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  ->  J  e.  Top )
11 simpl 109 . . . 4  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  ->  A  e.  J )
122cldopn 14427 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  ( X  \  B )  e.  J
)
1312adantl 277 . . . 4  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( X  \  B
)  e.  J )
14 inopn 14323 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J  /\  ( X  \  B )  e.  J )  -> 
( A  i^i  ( X  \  B ) )  e.  J )
1510, 11, 13, 14syl3anc 1249 . . 3  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( A  i^i  ( X  \  B ) )  e.  J )
168, 15eqeltrrid 2284 . 2  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( ( A  i^i  X )  \  B )  e.  J )
177, 16eqeltrrd 2274 1  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( A  \  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    \ cdif 3154    i^i cin 3156    C_ wss 3157   U.cuni 3840   ` cfv 5259   Topctop 14317   Clsdccld 14412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-top 14318  df-cld 14415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator