ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difopn Unicode version

Theorem difopn 14776
Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
difopn  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( A  \  B
)  e.  J )

Proof of Theorem difopn
StepHypRef Expression
1 elssuni 3915 . . . . . 6  |-  ( A  e.  J  ->  A  C_ 
U. J )
2 iscld.1 . . . . . 6  |-  X  = 
U. J
31, 2sseqtrrdi 3273 . . . . 5  |-  ( A  e.  J  ->  A  C_  X )
43adantr 276 . . . 4  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  ->  A  C_  X )
5 df-ss 3210 . . . 4  |-  ( A 
C_  X  <->  ( A  i^i  X )  =  A )
64, 5sylib 122 . . 3  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( A  i^i  X
)  =  A )
76difeq1d 3321 . 2  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( ( A  i^i  X )  \  B )  =  ( A  \  B ) )
8 indif2 3448 . . 3  |-  ( A  i^i  ( X  \  B ) )  =  ( ( A  i^i  X )  \  B )
9 cldrcl 14770 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  J  e.  Top )
109adantl 277 . . . 4  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  ->  J  e.  Top )
11 simpl 109 . . . 4  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  ->  A  e.  J )
122cldopn 14775 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  ( X  \  B )  e.  J
)
1312adantl 277 . . . 4  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( X  \  B
)  e.  J )
14 inopn 14671 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J  /\  ( X  \  B )  e.  J )  -> 
( A  i^i  ( X  \  B ) )  e.  J )
1510, 11, 13, 14syl3anc 1271 . . 3  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( A  i^i  ( X  \  B ) )  e.  J )
168, 15eqeltrrid 2317 . 2  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( ( A  i^i  X )  \  B )  e.  J )
177, 16eqeltrrd 2307 1  |-  ( ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  -> 
( A  \  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    \ cdif 3194    i^i cin 3196    C_ wss 3197   U.cuni 3887   ` cfv 5317   Topctop 14665   Clsdccld 14760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-top 14666  df-cld 14763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator