Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difopn | Unicode version |
Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.) |
Ref | Expression |
---|---|
iscld.1 |
Ref | Expression |
---|---|
difopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 3817 | . . . . . 6 | |
2 | iscld.1 | . . . . . 6 | |
3 | 1, 2 | sseqtrrdi 3191 | . . . . 5 |
4 | 3 | adantr 274 | . . . 4 |
5 | df-ss 3129 | . . . 4 | |
6 | 4, 5 | sylib 121 | . . 3 |
7 | 6 | difeq1d 3239 | . 2 |
8 | indif2 3366 | . . 3 | |
9 | cldrcl 12752 | . . . . 5 | |
10 | 9 | adantl 275 | . . . 4 |
11 | simpl 108 | . . . 4 | |
12 | 2 | cldopn 12757 | . . . . 5 |
13 | 12 | adantl 275 | . . . 4 |
14 | inopn 12651 | . . . 4 | |
15 | 10, 11, 13, 14 | syl3anc 1228 | . . 3 |
16 | 8, 15 | eqeltrrid 2254 | . 2 |
17 | 7, 16 | eqeltrrd 2244 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cdif 3113 cin 3115 wss 3116 cuni 3789 cfv 5188 ctop 12645 ccld 12742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-top 12646 df-cld 12745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |