ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin3 Unicode version

Theorem intmin3 3926
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intmin3.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
intmin3.3  |-  ps
Assertion
Ref Expression
intmin3  |-  ( A  e.  V  ->  |^| { x  |  ph }  C_  A
)
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem intmin3
StepHypRef Expression
1 intmin3.3 . . 3  |-  ps
2 intmin3.2 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32elabg 2926 . . 3  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  ps )
)
41, 3mpbiri 168 . 2  |-  ( A  e.  V  ->  A  e.  { x  |  ph } )
5 intss1 3914 . 2  |-  ( A  e.  { x  | 
ph }  ->  |^| { x  |  ph }  C_  A
)
64, 5syl 14 1  |-  ( A  e.  V  ->  |^| { x  |  ph }  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193    C_ wss 3174   |^|cint 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-int 3900
This theorem is referenced by:  intid  4286
  Copyright terms: Public domain W3C validator