ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin3 Unicode version

Theorem intmin3 3858
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intmin3.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
intmin3.3  |-  ps
Assertion
Ref Expression
intmin3  |-  ( A  e.  V  ->  |^| { x  |  ph }  C_  A
)
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem intmin3
StepHypRef Expression
1 intmin3.3 . . 3  |-  ps
2 intmin3.2 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32elabg 2876 . . 3  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  ps )
)
41, 3mpbiri 167 . 2  |-  ( A  e.  V  ->  A  e.  { x  |  ph } )
5 intss1 3846 . 2  |-  ( A  e.  { x  | 
ph }  ->  |^| { x  |  ph }  C_  A
)
64, 5syl 14 1  |-  ( A  e.  V  ->  |^| { x  |  ph }  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156    C_ wss 3121   |^|cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-int 3832
This theorem is referenced by:  intid  4209
  Copyright terms: Public domain W3C validator