ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin4 Unicode version

Theorem intmin4 3767
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
Assertion
Ref Expression
intmin4  |-  ( A 
C_  |^| { x  | 
ph }  ->  |^| { x  |  ( A  C_  x  /\  ph ) }  =  |^| { x  |  ph } )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem intmin4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssintab 3756 . . . 4  |-  ( A 
C_  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  C_  x ) )
2 simpr 109 . . . . . . . 8  |-  ( ( A  C_  x  /\  ph )  ->  ph )
3 ancr 317 . . . . . . . 8  |-  ( (
ph  ->  A  C_  x
)  ->  ( ph  ->  ( A  C_  x  /\  ph ) ) )
42, 3impbid2 142 . . . . . . 7  |-  ( (
ph  ->  A  C_  x
)  ->  ( ( A  C_  x  /\  ph ) 
<-> 
ph ) )
54imbi1d 230 . . . . . 6  |-  ( (
ph  ->  A  C_  x
)  ->  ( (
( A  C_  x  /\  ph )  ->  y  e.  x )  <->  ( ph  ->  y  e.  x ) ) )
65alimi 1414 . . . . 5  |-  ( A. x ( ph  ->  A 
C_  x )  ->  A. x ( ( ( A  C_  x  /\  ph )  ->  y  e.  x )  <->  ( ph  ->  y  e.  x ) ) )
7 albi 1427 . . . . 5  |-  ( A. x ( ( ( A  C_  x  /\  ph )  ->  y  e.  x )  <->  ( ph  ->  y  e.  x ) )  ->  ( A. x ( ( A 
C_  x  /\  ph )  ->  y  e.  x
)  <->  A. x ( ph  ->  y  e.  x ) ) )
86, 7syl 14 . . . 4  |-  ( A. x ( ph  ->  A 
C_  x )  -> 
( A. x ( ( A  C_  x  /\  ph )  ->  y  e.  x )  <->  A. x
( ph  ->  y  e.  x ) ) )
91, 8sylbi 120 . . 3  |-  ( A 
C_  |^| { x  | 
ph }  ->  ( A. x ( ( A 
C_  x  /\  ph )  ->  y  e.  x
)  <->  A. x ( ph  ->  y  e.  x ) ) )
10 vex 2661 . . . 4  |-  y  e. 
_V
1110elintab 3750 . . 3  |-  ( y  e.  |^| { x  |  ( A  C_  x  /\  ph ) }  <->  A. x
( ( A  C_  x  /\  ph )  -> 
y  e.  x ) )
1210elintab 3750 . . 3  |-  ( y  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  y  e.  x ) )
139, 11, 123bitr4g 222 . 2  |-  ( A 
C_  |^| { x  | 
ph }  ->  (
y  e.  |^| { x  |  ( A  C_  x  /\  ph ) }  <-> 
y  e.  |^| { x  |  ph } ) )
1413eqrdv 2113 1  |-  ( A 
C_  |^| { x  | 
ph }  ->  |^| { x  |  ( A  C_  x  /\  ph ) }  =  |^| { x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1312    = wceq 1314    e. wcel 1463   {cab 2101    C_ wss 3039   |^|cint 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-v 2660  df-in 3045  df-ss 3052  df-int 3740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator