ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin2 Unicode version

Theorem intmin2 3925
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1  |-  A  e. 
_V
Assertion
Ref Expression
intmin2  |-  |^| { x  |  A  C_  x }  =  A
Distinct variable group:    x, A

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2798 . . 3  |-  { x  e.  _V  |  A  C_  x }  =  {
x  |  A  C_  x }
21inteqi 3903 . 2  |-  |^| { x  e.  _V  |  A  C_  x }  =  |^| { x  |  A  C_  x }
3 intmin2.1 . . 3  |-  A  e. 
_V
4 intmin 3919 . . 3  |-  ( A  e.  _V  ->  |^| { x  e.  _V  |  A  C_  x }  =  A
)
53, 4ax-mp 5 . 2  |-  |^| { x  e.  _V  |  A  C_  x }  =  A
62, 5eqtr3i 2230 1  |-  |^| { x  |  A  C_  x }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178   {cab 2193   {crab 2490   _Vcvv 2776    C_ wss 3174   |^|cint 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-v 2778  df-in 3180  df-ss 3187  df-int 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator