ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin2 Unicode version

Theorem intmin2 3911
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1  |-  A  e. 
_V
Assertion
Ref Expression
intmin2  |-  |^| { x  |  A  C_  x }  =  A
Distinct variable group:    x, A

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2793 . . 3  |-  { x  e.  _V  |  A  C_  x }  =  {
x  |  A  C_  x }
21inteqi 3889 . 2  |-  |^| { x  e.  _V  |  A  C_  x }  =  |^| { x  |  A  C_  x }
3 intmin2.1 . . 3  |-  A  e. 
_V
4 intmin 3905 . . 3  |-  ( A  e.  _V  ->  |^| { x  e.  _V  |  A  C_  x }  =  A
)
53, 4ax-mp 5 . 2  |-  |^| { x  e.  _V  |  A  C_  x }  =  A
62, 5eqtr3i 2228 1  |-  |^| { x  |  A  C_  x }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   {cab 2191   {crab 2488   _Vcvv 2772    C_ wss 3166   |^|cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179  df-int 3886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator