ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin2 Unicode version

Theorem intmin2 3850
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1  |-  A  e. 
_V
Assertion
Ref Expression
intmin2  |-  |^| { x  |  A  C_  x }  =  A
Distinct variable group:    x, A

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2747 . . 3  |-  { x  e.  _V  |  A  C_  x }  =  {
x  |  A  C_  x }
21inteqi 3828 . 2  |-  |^| { x  e.  _V  |  A  C_  x }  =  |^| { x  |  A  C_  x }
3 intmin2.1 . . 3  |-  A  e. 
_V
4 intmin 3844 . . 3  |-  ( A  e.  _V  ->  |^| { x  e.  _V  |  A  C_  x }  =  A
)
53, 4ax-mp 5 . 2  |-  |^| { x  e.  _V  |  A  C_  x }  =  A
62, 5eqtr3i 2188 1  |-  |^| { x  |  A  C_  x }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {cab 2151   {crab 2448   _Vcvv 2726    C_ wss 3116   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-int 3825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator