ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin2 Unicode version

Theorem intmin2 3948
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1  |-  A  e. 
_V
Assertion
Ref Expression
intmin2  |-  |^| { x  |  A  C_  x }  =  A
Distinct variable group:    x, A

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2821 . . 3  |-  { x  e.  _V  |  A  C_  x }  =  {
x  |  A  C_  x }
21inteqi 3926 . 2  |-  |^| { x  e.  _V  |  A  C_  x }  =  |^| { x  |  A  C_  x }
3 intmin2.1 . . 3  |-  A  e. 
_V
4 intmin 3942 . . 3  |-  ( A  e.  _V  ->  |^| { x  e.  _V  |  A  C_  x }  =  A
)
53, 4ax-mp 5 . 2  |-  |^| { x  e.  _V  |  A  C_  x }  =  A
62, 5eqtr3i 2252 1  |-  |^| { x  |  A  C_  x }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   {cab 2215   {crab 2512   _Vcvv 2799    C_ wss 3197   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-in 3203  df-ss 3210  df-int 3923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator