| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intid | Unicode version | ||
| Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) |
| Ref | Expression |
|---|---|
| intid.1 |
|
| Ref | Expression |
|---|---|
| intid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intid.1 |
. . . 4
| |
| 2 | 1 | snex 4245 |
. . 3
|
| 3 | eleq2 2271 |
. . . 4
| |
| 4 | 1 | snid 3674 |
. . . 4
|
| 5 | 3, 4 | intmin3 3926 |
. . 3
|
| 6 | 2, 5 | ax-mp 5 |
. 2
|
| 7 | 1 | elintab 3910 |
. . . 4
|
| 8 | id 19 |
. . . 4
| |
| 9 | 7, 8 | mpgbir 1477 |
. . 3
|
| 10 | snssi 3788 |
. . 3
| |
| 11 | 9, 10 | ax-mp 5 |
. 2
|
| 12 | 6, 11 | eqssi 3217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-int 3900 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |