Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intid | Unicode version |
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) |
Ref | Expression |
---|---|
intid.1 |
Ref | Expression |
---|---|
intid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intid.1 | . . . 4 | |
2 | 1 | snex 4164 | . . 3 |
3 | eleq2 2230 | . . . 4 | |
4 | 1 | snid 3607 | . . . 4 |
5 | 3, 4 | intmin3 3851 | . . 3 |
6 | 2, 5 | ax-mp 5 | . 2 |
7 | 1 | elintab 3835 | . . . 4 |
8 | id 19 | . . . 4 | |
9 | 7, 8 | mpgbir 1441 | . . 3 |
10 | snssi 3717 | . . 3 | |
11 | 9, 10 | ax-mp 5 | . 2 |
12 | 6, 11 | eqssi 3158 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cab 2151 cvv 2726 wss 3116 csn 3576 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-int 3825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |