ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intid Unicode version

Theorem intid 4309
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
Hypothesis
Ref Expression
intid.1  |-  A  e. 
_V
Assertion
Ref Expression
intid  |-  |^| { x  |  A  e.  x }  =  { A }
Distinct variable group:    x, A

Proof of Theorem intid
StepHypRef Expression
1 intid.1 . . . 4  |-  A  e. 
_V
21snex 4268 . . 3  |-  { A }  e.  _V
3 eleq2 2293 . . . 4  |-  ( x  =  { A }  ->  ( A  e.  x  <->  A  e.  { A }
) )
41snid 3697 . . . 4  |-  A  e. 
{ A }
53, 4intmin3 3949 . . 3  |-  ( { A }  e.  _V  ->  |^| { x  |  A  e.  x }  C_ 
{ A } )
62, 5ax-mp 5 . 2  |-  |^| { x  |  A  e.  x }  C_  { A }
71elintab 3933 . . . 4  |-  ( A  e.  |^| { x  |  A  e.  x }  <->  A. x ( A  e.  x  ->  A  e.  x ) )
8 id 19 . . . 4  |-  ( A  e.  x  ->  A  e.  x )
97, 8mpgbir 1499 . . 3  |-  A  e. 
|^| { x  |  A  e.  x }
10 snssi 3811 . . 3  |-  ( A  e.  |^| { x  |  A  e.  x }  ->  { A }  C_  |^|
{ x  |  A  e.  x } )
119, 10ax-mp 5 . 2  |-  { A }  C_  |^| { x  |  A  e.  x }
126, 11eqssi 3240 1  |-  |^| { x  |  A  e.  x }  =  { A }
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799    C_ wss 3197   {csn 3666   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-int 3923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator