ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intid Unicode version

Theorem intid 4202
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
Hypothesis
Ref Expression
intid.1  |-  A  e. 
_V
Assertion
Ref Expression
intid  |-  |^| { x  |  A  e.  x }  =  { A }
Distinct variable group:    x, A

Proof of Theorem intid
StepHypRef Expression
1 intid.1 . . . 4  |-  A  e. 
_V
21snex 4164 . . 3  |-  { A }  e.  _V
3 eleq2 2230 . . . 4  |-  ( x  =  { A }  ->  ( A  e.  x  <->  A  e.  { A }
) )
41snid 3607 . . . 4  |-  A  e. 
{ A }
53, 4intmin3 3851 . . 3  |-  ( { A }  e.  _V  ->  |^| { x  |  A  e.  x }  C_ 
{ A } )
62, 5ax-mp 5 . 2  |-  |^| { x  |  A  e.  x }  C_  { A }
71elintab 3835 . . . 4  |-  ( A  e.  |^| { x  |  A  e.  x }  <->  A. x ( A  e.  x  ->  A  e.  x ) )
8 id 19 . . . 4  |-  ( A  e.  x  ->  A  e.  x )
97, 8mpgbir 1441 . . 3  |-  A  e. 
|^| { x  |  A  e.  x }
10 snssi 3717 . . 3  |-  ( A  e.  |^| { x  |  A  e.  x }  ->  { A }  C_  |^|
{ x  |  A  e.  x } )
119, 10ax-mp 5 . 2  |-  { A }  C_  |^| { x  |  A  e.  x }
126, 11eqssi 3158 1  |-  |^| { x  |  A  e.  x }  =  { A }
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726    C_ wss 3116   {csn 3576   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-int 3825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator