ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intminss Unicode version

Theorem intminss 3910
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
Hypothesis
Ref Expression
intminss.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
intminss  |-  ( ( A  e.  B  /\  ps )  ->  |^| { x  e.  B  |  ph }  C_  A )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem intminss
StepHypRef Expression
1 intminss.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21elrab 2929 . 2  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
3 intss1 3900 . 2  |-  ( A  e.  { x  e.  B  |  ph }  ->  |^| { x  e.  B  |  ph }  C_  A )
42, 3sylbir 135 1  |-  ( ( A  e.  B  /\  ps )  ->  |^| { x  e.  B  |  ph }  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {crab 2488    C_ wss 3166   |^|cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179  df-int 3886
This theorem is referenced by:  onintss  4437  cardonle  7294
  Copyright terms: Public domain W3C validator