ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intminss GIF version

Theorem intminss 3849
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
Hypothesis
Ref Expression
intminss.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
intminss ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intminss
StepHypRef Expression
1 intminss.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2882 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
3 intss1 3839 . 2 (𝐴 ∈ {𝑥𝐵𝜑} → {𝑥𝐵𝜑} ⊆ 𝐴)
42, 3sylbir 134 1 ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {crab 2448  wss 3116   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-int 3825
This theorem is referenced by:  onintss  4368  cardonle  7143
  Copyright terms: Public domain W3C validator