ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intv Unicode version

Theorem intv 4199
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
intv  |-  |^| _V  =  (/)

Proof of Theorem intv
StepHypRef Expression
1 0ex 4156 . 2  |-  (/)  e.  _V
2 int0el 3900 . 2  |-  ( (/)  e.  _V  ->  |^| _V  =  (/) )
31, 2ax-mp 5 1  |-  |^| _V  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3446   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4155
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-int 3871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator