ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intv Unicode version

Theorem intv 4011
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
intv  |-  |^| _V  =  (/)

Proof of Theorem intv
StepHypRef Expression
1 0ex 3972 . 2  |-  (/)  e.  _V
2 int0el 3724 . 2  |-  ( (/)  e.  _V  ->  |^| _V  =  (/) )
31, 2ax-mp 7 1  |-  |^| _V  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1290    e. wcel 1439   _Vcvv 2620   (/)c0 3287   |^|cint 3694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-nul 3971
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-dif 3002  df-in 3006  df-ss 3013  df-nul 3288  df-int 3695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator