ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0el Unicode version

Theorem int0el 3889
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
int0el  |-  ( (/)  e.  A  ->  |^| A  =  (/) )

Proof of Theorem int0el
StepHypRef Expression
1 intss1 3874 . 2  |-  ( (/)  e.  A  ->  |^| A  C_  (/) )
2 0ss 3476 . . 3  |-  (/)  C_  |^| A
32a1i 9 . 2  |-  ( (/)  e.  A  ->  (/)  C_  |^| A
)
41, 3eqssd 3187 1  |-  ( (/)  e.  A  ->  |^| A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    C_ wss 3144   (/)c0 3437   |^|cint 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-nul 3438  df-int 3860
This theorem is referenced by:  intv  4188  inton  4411
  Copyright terms: Public domain W3C validator