ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0el Unicode version

Theorem int0el 3854
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
int0el  |-  ( (/)  e.  A  ->  |^| A  =  (/) )

Proof of Theorem int0el
StepHypRef Expression
1 intss1 3839 . 2  |-  ( (/)  e.  A  ->  |^| A  C_  (/) )
2 0ss 3447 . . 3  |-  (/)  C_  |^| A
32a1i 9 . 2  |-  ( (/)  e.  A  ->  (/)  C_  |^| A
)
41, 3eqssd 3159 1  |-  ( (/)  e.  A  ->  |^| A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    C_ wss 3116   (/)c0 3409   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-int 3825
This theorem is referenced by:  intv  4149  inton  4371
  Copyright terms: Public domain W3C validator