ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0el Unicode version

Theorem int0el 3904
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
int0el  |-  ( (/)  e.  A  ->  |^| A  =  (/) )

Proof of Theorem int0el
StepHypRef Expression
1 intss1 3889 . 2  |-  ( (/)  e.  A  ->  |^| A  C_  (/) )
2 0ss 3489 . . 3  |-  (/)  C_  |^| A
32a1i 9 . 2  |-  ( (/)  e.  A  ->  (/)  C_  |^| A
)
41, 3eqssd 3200 1  |-  ( (/)  e.  A  ->  |^| A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    C_ wss 3157   (/)c0 3450   |^|cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-int 3875
This theorem is referenced by:  intv  4203  inton  4428
  Copyright terms: Public domain W3C validator