Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpweq | Unicode version |
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4160 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
Ref | Expression |
---|---|
axpweq.1 |
Ref | Expression |
---|---|
axpweq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 3580 | . . . 4 | |
2 | pweq 3569 | . . . . . 6 | |
3 | 2 | eleq2d 2240 | . . . . 5 |
4 | 3 | spcegv 2818 | . . . 4 |
5 | 1, 4 | mpd 13 | . . 3 |
6 | elex 2741 | . . . 4 | |
7 | 6 | exlimiv 1591 | . . 3 |
8 | 5, 7 | impbii 125 | . 2 |
9 | vex 2733 | . . . . 5 | |
10 | 9 | elpw2 4143 | . . . 4 |
11 | pwss 3582 | . . . . 5 | |
12 | dfss2 3136 | . . . . . . 7 | |
13 | 12 | imbi1i 237 | . . . . . 6 |
14 | 13 | albii 1463 | . . . . 5 |
15 | 11, 14 | bitri 183 | . . . 4 |
16 | 10, 15 | bitri 183 | . . 3 |
17 | 16 | exbii 1598 | . 2 |
18 | 8, 17 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 cvv 2730 wss 3121 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |