ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpweq Unicode version

Theorem axpweq 4166
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4169 is not used by the proof. (Contributed by NM, 22-Jun-2009.)
Hypothesis
Ref Expression
axpweq.1  |-  A  e. 
_V
Assertion
Ref Expression
axpweq  |-  ( ~P A  e.  _V  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
Distinct variable group:    x, y, z, A

Proof of Theorem axpweq
StepHypRef Expression
1 pwidg 3586 . . . 4  |-  ( ~P A  e.  _V  ->  ~P A  e.  ~P ~P A )
2 pweq 3575 . . . . . 6  |-  ( x  =  ~P A  ->  ~P x  =  ~P ~P A )
32eleq2d 2245 . . . . 5  |-  ( x  =  ~P A  -> 
( ~P A  e. 
~P x  <->  ~P A  e.  ~P ~P A ) )
43spcegv 2823 . . . 4  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  ~P ~P A  ->  E. x ~P A  e.  ~P x ) )
51, 4mpd 13 . . 3  |-  ( ~P A  e.  _V  ->  E. x ~P A  e. 
~P x )
6 elex 2746 . . . 4  |-  ( ~P A  e.  ~P x  ->  ~P A  e.  _V )
76exlimiv 1596 . . 3  |-  ( E. x ~P A  e. 
~P x  ->  ~P A  e.  _V )
85, 7impbii 126 . 2  |-  ( ~P A  e.  _V  <->  E. x ~P A  e.  ~P x )
9 vex 2738 . . . . 5  |-  x  e. 
_V
109elpw2 4152 . . . 4  |-  ( ~P A  e.  ~P x  <->  ~P A  C_  x )
11 pwss 3588 . . . . 5  |-  ( ~P A  C_  x  <->  A. y
( y  C_  A  ->  y  e.  x ) )
12 dfss2 3142 . . . . . . 7  |-  ( y 
C_  A  <->  A. z
( z  e.  y  ->  z  e.  A
) )
1312imbi1i 238 . . . . . 6  |-  ( ( y  C_  A  ->  y  e.  x )  <->  ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
1413albii 1468 . . . . 5  |-  ( A. y ( y  C_  A  ->  y  e.  x
)  <->  A. y ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
1511, 14bitri 184 . . . 4  |-  ( ~P A  C_  x  <->  A. y
( A. z ( z  e.  y  -> 
z  e.  A )  ->  y  e.  x
) )
1610, 15bitri 184 . . 3  |-  ( ~P A  e.  ~P x  <->  A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
1716exbii 1603 . 2  |-  ( E. x ~P A  e. 
~P x  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
188, 17bitri 184 1  |-  ( ~P A  e.  _V  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1490    e. wcel 2146   _Vcvv 2735    C_ wss 3127   ~Pcpw 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator