ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpweq Unicode version

Theorem axpweq 4035
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4038 is not used by the proof. (Contributed by NM, 22-Jun-2009.)
Hypothesis
Ref Expression
axpweq.1  |-  A  e. 
_V
Assertion
Ref Expression
axpweq  |-  ( ~P A  e.  _V  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
Distinct variable group:    x, y, z, A

Proof of Theorem axpweq
StepHypRef Expression
1 pwidg 3471 . . . 4  |-  ( ~P A  e.  _V  ->  ~P A  e.  ~P ~P A )
2 pweq 3460 . . . . . 6  |-  ( x  =  ~P A  ->  ~P x  =  ~P ~P A )
32eleq2d 2169 . . . . 5  |-  ( x  =  ~P A  -> 
( ~P A  e. 
~P x  <->  ~P A  e.  ~P ~P A ) )
43spcegv 2729 . . . 4  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  ~P ~P A  ->  E. x ~P A  e.  ~P x ) )
51, 4mpd 13 . . 3  |-  ( ~P A  e.  _V  ->  E. x ~P A  e. 
~P x )
6 elex 2652 . . . 4  |-  ( ~P A  e.  ~P x  ->  ~P A  e.  _V )
76exlimiv 1545 . . 3  |-  ( E. x ~P A  e. 
~P x  ->  ~P A  e.  _V )
85, 7impbii 125 . 2  |-  ( ~P A  e.  _V  <->  E. x ~P A  e.  ~P x )
9 vex 2644 . . . . 5  |-  x  e. 
_V
109elpw2 4022 . . . 4  |-  ( ~P A  e.  ~P x  <->  ~P A  C_  x )
11 pwss 3473 . . . . 5  |-  ( ~P A  C_  x  <->  A. y
( y  C_  A  ->  y  e.  x ) )
12 dfss2 3036 . . . . . . 7  |-  ( y 
C_  A  <->  A. z
( z  e.  y  ->  z  e.  A
) )
1312imbi1i 237 . . . . . 6  |-  ( ( y  C_  A  ->  y  e.  x )  <->  ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
1413albii 1414 . . . . 5  |-  ( A. y ( y  C_  A  ->  y  e.  x
)  <->  A. y ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
1511, 14bitri 183 . . . 4  |-  ( ~P A  C_  x  <->  A. y
( A. z ( z  e.  y  -> 
z  e.  A )  ->  y  e.  x
) )
1610, 15bitri 183 . . 3  |-  ( ~P A  e.  ~P x  <->  A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
1716exbii 1552 . 2  |-  ( E. x ~P A  e. 
~P x  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
188, 17bitri 183 1  |-  ( ~P A  e.  _V  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1297    = wceq 1299   E.wex 1436    e. wcel 1448   _Vcvv 2641    C_ wss 3021   ~Pcpw 3457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027  df-ss 3034  df-pw 3459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator