ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpweq Unicode version

Theorem axpweq 3998
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4001 is not used by the proof. (Contributed by NM, 22-Jun-2009.)
Hypothesis
Ref Expression
axpweq.1  |-  A  e. 
_V
Assertion
Ref Expression
axpweq  |-  ( ~P A  e.  _V  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
Distinct variable group:    x, y, z, A

Proof of Theorem axpweq
StepHypRef Expression
1 pwidg 3438 . . . 4  |-  ( ~P A  e.  _V  ->  ~P A  e.  ~P ~P A )
2 pweq 3428 . . . . . 6  |-  ( x  =  ~P A  ->  ~P x  =  ~P ~P A )
32eleq2d 2157 . . . . 5  |-  ( x  =  ~P A  -> 
( ~P A  e. 
~P x  <->  ~P A  e.  ~P ~P A ) )
43spcegv 2707 . . . 4  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  ~P ~P A  ->  E. x ~P A  e.  ~P x ) )
51, 4mpd 13 . . 3  |-  ( ~P A  e.  _V  ->  E. x ~P A  e. 
~P x )
6 elex 2630 . . . 4  |-  ( ~P A  e.  ~P x  ->  ~P A  e.  _V )
76exlimiv 1534 . . 3  |-  ( E. x ~P A  e. 
~P x  ->  ~P A  e.  _V )
85, 7impbii 124 . 2  |-  ( ~P A  e.  _V  <->  E. x ~P A  e.  ~P x )
9 vex 2622 . . . . 5  |-  x  e. 
_V
109elpw2 3985 . . . 4  |-  ( ~P A  e.  ~P x  <->  ~P A  C_  x )
11 pwss 3440 . . . . 5  |-  ( ~P A  C_  x  <->  A. y
( y  C_  A  ->  y  e.  x ) )
12 dfss2 3012 . . . . . . 7  |-  ( y 
C_  A  <->  A. z
( z  e.  y  ->  z  e.  A
) )
1312imbi1i 236 . . . . . 6  |-  ( ( y  C_  A  ->  y  e.  x )  <->  ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
1413albii 1404 . . . . 5  |-  ( A. y ( y  C_  A  ->  y  e.  x
)  <->  A. y ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
1511, 14bitri 182 . . . 4  |-  ( ~P A  C_  x  <->  A. y
( A. z ( z  e.  y  -> 
z  e.  A )  ->  y  e.  x
) )
1610, 15bitri 182 . . 3  |-  ( ~P A  e.  ~P x  <->  A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
1716exbii 1541 . 2  |-  ( E. x ~P A  e. 
~P x  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
188, 17bitri 182 1  |-  ( ~P A  e.  _V  <->  E. x A. y ( A. z
( z  e.  y  ->  z  e.  A
)  ->  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   _Vcvv 2619    C_ wss 2997   ~Pcpw 3425
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-in 3003  df-ss 3010  df-pw 3427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator