| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpweq | Unicode version | ||
| Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4208 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
| Ref | Expression |
|---|---|
| axpweq.1 |
|
| Ref | Expression |
|---|---|
| axpweq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwidg 3620 |
. . . 4
| |
| 2 | pweq 3609 |
. . . . . 6
| |
| 3 | 2 | eleq2d 2266 |
. . . . 5
|
| 4 | 3 | spcegv 2852 |
. . . 4
|
| 5 | 1, 4 | mpd 13 |
. . 3
|
| 6 | elex 2774 |
. . . 4
| |
| 7 | 6 | exlimiv 1612 |
. . 3
|
| 8 | 5, 7 | impbii 126 |
. 2
|
| 9 | vex 2766 |
. . . . 5
| |
| 10 | 9 | elpw2 4191 |
. . . 4
|
| 11 | pwss 3622 |
. . . . 5
| |
| 12 | ssalel 3172 |
. . . . . . 7
| |
| 13 | 12 | imbi1i 238 |
. . . . . 6
|
| 14 | 13 | albii 1484 |
. . . . 5
|
| 15 | 11, 14 | bitri 184 |
. . . 4
|
| 16 | 10, 15 | bitri 184 |
. . 3
|
| 17 | 16 | exbii 1619 |
. 2
|
| 18 | 8, 17 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |