| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpweq | Unicode version | ||
| Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4226 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
| Ref | Expression |
|---|---|
| axpweq.1 |
|
| Ref | Expression |
|---|---|
| axpweq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwidg 3635 |
. . . 4
| |
| 2 | pweq 3624 |
. . . . . 6
| |
| 3 | 2 | eleq2d 2276 |
. . . . 5
|
| 4 | 3 | spcegv 2865 |
. . . 4
|
| 5 | 1, 4 | mpd 13 |
. . 3
|
| 6 | elex 2785 |
. . . 4
| |
| 7 | 6 | exlimiv 1622 |
. . 3
|
| 8 | 5, 7 | impbii 126 |
. 2
|
| 9 | vex 2776 |
. . . . 5
| |
| 10 | 9 | elpw2 4209 |
. . . 4
|
| 11 | pwss 3637 |
. . . . 5
| |
| 12 | ssalel 3185 |
. . . . . . 7
| |
| 13 | 12 | imbi1i 238 |
. . . . . 6
|
| 14 | 13 | albii 1494 |
. . . . 5
|
| 15 | 11, 14 | bitri 184 |
. . . 4
|
| 16 | 10, 15 | bitri 184 |
. . 3
|
| 17 | 16 | exbii 1629 |
. 2
|
| 18 | 8, 17 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |