Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpweq | Unicode version |
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4169 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
Ref | Expression |
---|---|
axpweq.1 |
Ref | Expression |
---|---|
axpweq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 3586 | . . . 4 | |
2 | pweq 3575 | . . . . . 6 | |
3 | 2 | eleq2d 2245 | . . . . 5 |
4 | 3 | spcegv 2823 | . . . 4 |
5 | 1, 4 | mpd 13 | . . 3 |
6 | elex 2746 | . . . 4 | |
7 | 6 | exlimiv 1596 | . . 3 |
8 | 5, 7 | impbii 126 | . 2 |
9 | vex 2738 | . . . . 5 | |
10 | 9 | elpw2 4152 | . . . 4 |
11 | pwss 3588 | . . . . 5 | |
12 | dfss2 3142 | . . . . . . 7 | |
13 | 12 | imbi1i 238 | . . . . . 6 |
14 | 13 | albii 1468 | . . . . 5 |
15 | 11, 14 | bitri 184 | . . . 4 |
16 | 10, 15 | bitri 184 | . . 3 |
17 | 16 | exbii 1603 | . 2 |
18 | 8, 17 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wceq 1353 wex 1490 wcel 2146 cvv 2735 wss 3127 cpw 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |