| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpweq | Unicode version | ||
| Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4257 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
| Ref | Expression |
|---|---|
| axpweq.1 |
|
| Ref | Expression |
|---|---|
| axpweq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwidg 3663 |
. . . 4
| |
| 2 | pweq 3652 |
. . . . . 6
| |
| 3 | 2 | eleq2d 2299 |
. . . . 5
|
| 4 | 3 | spcegv 2891 |
. . . 4
|
| 5 | 1, 4 | mpd 13 |
. . 3
|
| 6 | elex 2811 |
. . . 4
| |
| 7 | 6 | exlimiv 1644 |
. . 3
|
| 8 | 5, 7 | impbii 126 |
. 2
|
| 9 | vex 2802 |
. . . . 5
| |
| 10 | 9 | elpw2 4240 |
. . . 4
|
| 11 | pwss 3665 |
. . . . 5
| |
| 12 | ssalel 3212 |
. . . . . . 7
| |
| 13 | 12 | imbi1i 238 |
. . . . . 6
|
| 14 | 13 | albii 1516 |
. . . . 5
|
| 15 | 11, 14 | bitri 184 |
. . . 4
|
| 16 | 10, 15 | bitri 184 |
. . 3
|
| 17 | 16 | exbii 1651 |
. 2
|
| 18 | 8, 17 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |