ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intv GIF version

Theorem intv 4233
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
intv V = ∅

Proof of Theorem intv
StepHypRef Expression
1 0ex 4190 . 2 ∅ ∈ V
2 int0el 3932 . 2 (∅ ∈ V → V = ∅)
31, 2ax-mp 5 1 V = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wcel 2180  Vcvv 2779  c0 3471   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-nul 4189
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-dif 3179  df-in 3183  df-ss 3190  df-nul 3472  df-int 3903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator