ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotajust Unicode version

Theorem iotajust 5152
Description: Soundness justification theorem for df-iota 5153. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
iotajust  |-  U. {
y  |  { x  |  ph }  =  {
y } }  =  U. { z  |  {
x  |  ph }  =  { z } }
Distinct variable groups:    x, z    ph, z    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem iotajust
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sneq 3587 . . . . 5  |-  ( y  =  w  ->  { y }  =  { w } )
21eqeq2d 2177 . . . 4  |-  ( y  =  w  ->  ( { x  |  ph }  =  { y }  <->  { x  |  ph }  =  {
w } ) )
32cbvabv 2291 . . 3  |-  { y  |  { x  | 
ph }  =  {
y } }  =  { w  |  {
x  |  ph }  =  { w } }
4 sneq 3587 . . . . 5  |-  ( w  =  z  ->  { w }  =  { z } )
54eqeq2d 2177 . . . 4  |-  ( w  =  z  ->  ( { x  |  ph }  =  { w }  <->  { x  |  ph }  =  {
z } ) )
65cbvabv 2291 . . 3  |-  { w  |  { x  |  ph }  =  { w } }  =  {
z  |  { x  |  ph }  =  {
z } }
73, 6eqtri 2186 . 2  |-  { y  |  { x  | 
ph }  =  {
y } }  =  { z  |  {
x  |  ph }  =  { z } }
87unieqi 3799 1  |-  U. {
y  |  { x  |  ph }  =  {
y } }  =  U. { z  |  {
x  |  ph }  =  { z } }
Colors of variables: wff set class
Syntax hints:    = wceq 1343   {cab 2151   {csn 3576   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-sn 3582  df-uni 3790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator