HomeHome Intuitionistic Logic Explorer
Theorem List (p. 52 of 129)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5101-5200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfunssres 5101 The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
 
Theoremfun2ssres 5102 Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
 
Theoremfunun 5103 The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( Fun 
 F  /\  Fun  G ) 
 /\  ( dom  F  i^i  dom  G )  =  (/) )  ->  Fun  ( F  u.  G ) )
 
Theoremfuncnvsn 5104 The converse singleton of an ordered pair is a function. This is equivalent to funsn 5107 via cnvsn 4957, but stating it this way allows us to skip the sethood assumptions on  A and  B. (Contributed by NM, 30-Apr-2015.)
 |- 
 Fun  `' { <. A ,  B >. }
 
Theoremfunsng 5105 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
 
Theoremfnsng 5106 Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )
 
Theoremfunsn 5107 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 Fun  { <. A ,  B >. }
 
Theoremfuninsn 5108 A function based on the singleton of an ordered pair. Unlike funsng 5105, this holds even if  A or  B is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
 |- 
 Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )
 
Theoremfunprg 5109 A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B ) 
 ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
 
Theoremfuntpg 5110 A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
 
Theoremfunpr 5111 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
 
Theoremfuntp 5112 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C  /\  B  =/=  C ) 
 ->  Fun  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } )
 
Theoremfnsn 5113 Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { <. A ,  B >. }  Fn  { A }
 
Theoremfnprg 5114 Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B ) 
 ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B } )
 
Theoremfntpg 5115 Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  Fn  { X ,  Y ,  Z } )
 
Theoremfntp 5116 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C  /\  B  =/=  C ) 
 ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C }
 )
 
Theoremfun0 5117 The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
 |- 
 Fun  (/)
 
Theoremfuncnvcnv 5118 The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
 |-  ( Fun  A  ->  Fun  `' `' A )
 
Theoremfuncnv2 5119* A simpler equivalence for single-rooted (see funcnv 5120). (Contributed by NM, 9-Aug-2004.)
 |-  ( Fun  `' A  <->  A. y E* x  x A y )
 
Theoremfuncnv 5120* The converse of a class is a function iff the class is single-rooted, which means that for any  y in the range of  A there is at most one  x such that  x A
y. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5119 for a simpler version. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
 
Theoremfuncnv3 5121* A condition showing a class is single-rooted. (See funcnv 5120). (Contributed by NM, 26-May-2006.)
 |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
 
Theoremfuncnveq 5122* Another way of expressing that a class is single-rooted. Counterpart to dffun2 5069. (Contributed by Jim Kingdon, 24-Dec-2018.)
 |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
 )
 
Theoremfun2cnv 5123* The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that  A is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  `' `' A 
 <-> 
 A. x E* y  x A y )
 
Theoremsvrelfun 5124 A single-valued relation is a function. (See fun2cnv 5123 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
 |-  ( Fun  A  <->  ( Rel  A  /\  Fun  `' `' A ) )
 
Theoremfncnv 5125* Single-rootedness (see funcnv 5120) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
 |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R y )
 
Theoremfun11 5126* Two ways of stating that  A is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
 |-  ( ( Fun  `' `' A  /\  Fun  `' A )  <->  A. x A. y A. z A. w ( ( x A y 
 /\  z A w )  ->  ( x  =  z  <->  y  =  w ) ) )
 
Theoremfununi 5127* The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.)
 |-  ( A. f  e.  A  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f )
 )  ->  Fun  U. A )
 
Theoremfuncnvuni 5128* The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5120 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
 |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f
 ) )  ->  Fun  `' U. A )
 
Theoremfun11uni 5129* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
 |-  ( A. f  e.  A  ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f
 ) )  ->  ( Fun  U. A  /\  Fun  `'
 U. A ) )
 
Theoremfunin 5130 The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( Fun  F  ->  Fun  ( F  i^i  G ) )
 
Theoremfunres11 5131 The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
 |-  ( Fun  `' F  ->  Fun  `' ( F  |`  A ) )
 
Theoremfuncnvres 5132 The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
 |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A ) ) )
 
Theoremcnvresid 5133 Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
 |-  `' (  _I  |`  A )  =  (  _I  |`  A )
 
Theoremfuncnvres2 5134 The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
 |-  ( Fun  F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
 
Theoremfunimacnv 5135 The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
 |-  ( Fun  F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F )
 )
 
Theoremfunimass1 5136 A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
 |-  ( ( Fun  F  /\  A  C_  ran  F ) 
 ->  ( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )
 
Theoremfunimass2 5137 A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
 |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) ) 
 ->  ( F " A )  C_  B )
 
Theoremimadiflem 5138 One direction of imadif 5139. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
 |-  ( ( F " A )  \  ( F
 " B ) ) 
 C_  ( F "
 ( A  \  B ) )
 
Theoremimadif 5139 The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
 |-  ( Fun  `' F  ->  ( F " ( A  \  B ) )  =  ( ( F
 " A )  \  ( F " B ) ) )
 
Theoremimainlem 5140 One direction of imain 5141. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
 |-  ( F " ( A  i^i  B ) ) 
 C_  ( ( F
 " A )  i^i  ( F " B ) )
 
Theoremimain 5141 The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
 |-  ( Fun  `' F  ->  ( F " ( A  i^i  B ) )  =  ( ( F
 " A )  i^i  ( F " B ) ) )
 
Theoremfunimaexglem 5142 Lemma for funimaexg 5143. It constitutes the interesting part of funimaexg 5143, in which  B 
C_  dom  A. (Contributed by Jim Kingdon, 27-Dec-2018.)
 |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e.  _V )
 
Theoremfunimaexg 5143 Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A " B )  e.  _V )
 
Theoremfunimaex 5144 The image of a set under any function is also a set. Equivalent of Axiom of Replacement. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
 |-  B  e.  _V   =>    |-  ( Fun  A  ->  ( A " B )  e.  _V )
 
Theoremisarep1 5145* Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by  ph ( x ,  y ) i.e. the class  ( {
<. x ,  y >.  |  ph } " A
). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
 |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
 
Theoremisarep2 5146* Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, 
[ i, i  ] => o  ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5144. (Contributed by NM, 26-Oct-2006.)
 |-  A  e.  _V   &    |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
 [ z  /  y ] ph )  ->  y  =  z )   =>    |- 
 E. w  w  =  ( { <. x ,  y >.  |  ph } " A )
 
Theoremfneq1 5147 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
 
Theoremfneq2 5148 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
 
Theoremfneq1d 5149 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
 
Theoremfneq2d 5150 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F  Fn  A  <->  F  Fn  B ) )
 
Theoremfneq12d 5151 Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )
 
Theoremfneq12 5152 Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ( F  =  G  /\  A  =  B )  ->  ( F  Fn  A 
 <->  G  Fn  B ) )
 
Theoremfneq1i 5153 Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  F  =  G   =>    |-  ( F  Fn  A 
 <->  G  Fn  A )
 
Theoremfneq2i 5154 Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
 |-  A  =  B   =>    |-  ( F  Fn  A 
 <->  F  Fn  B )
 
Theoremnffn 5155 Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
 |-  F/_ x F   &    |-  F/_ x A   =>    |-  F/ x  F  Fn  A
 
Theoremfnfun 5156 A function with domain is a function. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  Fn  A  ->  Fun  F )
 
Theoremfnrel 5157 A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  Fn  A  ->  Rel  F )
 
Theoremfndm 5158 The domain of a function. (Contributed by NM, 2-Aug-1994.)
 |-  ( F  Fn  A  ->  dom  F  =  A )
 
Theoremfunfni 5159 Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.)
 |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  ph )   =>    |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ph )
 
Theoremfndmu 5160 A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( ( F  Fn  A  /\  F  Fn  B )  ->  A  =  B )
 
Theoremfnbr 5161 The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
 |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )
 
Theoremfnop 5162 The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
 |-  ( ( F  Fn  A  /\  <. B ,  C >.  e.  F )  ->  B  e.  A )
 
Theoremfneu 5163* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y  B F y )
 
Theoremfneu2 5164* There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! y <. B ,  y >.  e.  F )
 
Theoremfnun 5165 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
 |-  ( ( ( F  Fn  A  /\  G  Fn  B )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B ) )
 
Theoremfnunsn 5166 Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  Y  e.  _V )   &    |-  ( ph  ->  F  Fn  D )   &    |-  G  =  ( F  u.  { <. X ,  Y >. } )   &    |-  E  =  ( D  u.  { X } )   &    |-  ( ph  ->  -.  X  e.  D )   =>    |-  ( ph  ->  G  Fn  E )
 
Theoremfnco 5167 Composition of two functions. (Contributed by NM, 22-May-2006.)
 |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G )  Fn  B )
 
Theoremfnresdm 5168 A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
 |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
 
Theoremfnresdisj 5169 A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
 |-  ( F  Fn  A  ->  ( ( A  i^i  B )  =  (/)  <->  ( F  |`  B )  =  (/) ) )
 
Theorem2elresin 5170 Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
 |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
 
Theoremfnssresb 5171 Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
 |-  ( F  Fn  A  ->  ( ( F  |`  B )  Fn  B  <->  B  C_  A ) )
 
Theoremfnssres 5172 Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
 |-  ( ( F  Fn  A  /\  B  C_  A )  ->  ( F  |`  B )  Fn  B )
 
Theoremfnresin1 5173 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
 |-  ( F  Fn  A  ->  ( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )
 
Theoremfnresin2 5174 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
 |-  ( F  Fn  A  ->  ( F  |`  ( B  i^i  A ) )  Fn  ( B  i^i  A ) )
 
Theoremfnres 5175* An equivalence for functionality of a restriction. Compare dffun8 5087. (Contributed by Mario Carneiro, 20-May-2015.)
 |-  ( ( F  |`  A )  Fn  A  <->  A. x  e.  A  E! y  x F y )
 
Theoremfnresi 5176 Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.)
 |-  (  _I  |`  A )  Fn  A
 
Theoremfnima 5177 The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
 
Theoremfn0 5178 A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F  Fn  (/)  <->  F  =  (/) )
 
Theoremfnimadisj 5179 A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
 |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( F " C )  =  (/) )
 
Theoremfnimaeq0 5180 Images under a function never map nonempty sets to empty sets. (Contributed by Stefan O'Rear, 21-Jan-2015.)
 |-  ( ( F  Fn  A  /\  B  C_  A )  ->  ( ( F
 " B )  =  (/) 
 <->  B  =  (/) ) )
 
Theoremdfmpt3 5181 Alternate definition for the maps-to notation df-mpt 3931. (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
 )
 
Theoremfnopabg 5182* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
 |-  F  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }   =>    |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A )
 
Theoremfnopab 5183* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
 |-  ( x  e.  A  ->  E! y ph )   &    |-  F  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }   =>    |-  F  Fn  A
 
Theoremmptfng 5184* The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A )
 
Theoremfnmpt 5185* The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
 
Theoremmpt0 5186 A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( x  e.  (/)  |->  A )  =  (/)
 
Theoremfnmpti 5187* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  F  Fn  A
 
Theoremdmmpti 5188* Domain of an ordered-pair class abstraction that specifies a function. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   &    |-  F  =  ( x  e.  A  |->  B )   =>    |- 
 dom  F  =  A
 
Theoremdmmptd 5189* The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  A  =  ( x  e.  B  |->  C )   &    |-  ( ( ph  /\  x  e.  B )  ->  C  e.  V )   =>    |-  ( ph  ->  dom  A  =  B )
 
Theoremmptun 5190 Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )
 
Theoremfeq1 5191 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  =  G  ->  ( F : A --> B 
 <->  G : A --> B ) )
 
Theoremfeq2 5192 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( F : A --> C 
 <->  F : B --> C ) )
 
Theoremfeq3 5193 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( F : C --> A 
 <->  F : C --> B ) )
 
Theoremfeq23 5194 Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( A  =  C  /\  B  =  D )  ->  ( F : A
 --> B  <->  F : C --> D ) )
 
Theoremfeq1d 5195 Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  ( F : A --> B  <->  G : A --> B ) )
 
Theoremfeq2d 5196 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F : A --> C  <->  F : B --> C ) )
 
Theoremfeq3d 5197 Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F : X --> A  <->  F : X --> B ) )
 
Theoremfeq12d 5198 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F : A --> C  <->  G : B --> C ) )
 
Theoremfeq123d 5199 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( F : A --> C  <->  G : B --> D ) )
 
Theoremfeq123 5200 Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
 |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D ) 
 ->  ( F : A --> B 
 <->  G : C --> D ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >