ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotajust GIF version

Theorem iotajust 5236
Description: Soundness justification theorem for df-iota 5237. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
iotajust {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotajust
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sneq 3645 . . . . 5 (𝑦 = 𝑤 → {𝑦} = {𝑤})
21eqeq2d 2218 . . . 4 (𝑦 = 𝑤 → ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝑤}))
32cbvabv 2331 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
4 sneq 3645 . . . . 5 (𝑤 = 𝑧 → {𝑤} = {𝑧})
54eqeq2d 2218 . . . 4 (𝑤 = 𝑧 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑧}))
65cbvabv 2331 . . 3 {𝑤 ∣ {𝑥𝜑} = {𝑤}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
73, 6eqtri 2227 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
87unieqi 3862 1 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  {cab 2192  {csn 3634   cuni 3852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-sn 3640  df-uni 3853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator