ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotajust GIF version

Theorem iotajust 4992
Description: Soundness justification theorem for df-iota 4993. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
iotajust {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotajust
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sneq 3461 . . . . 5 (𝑦 = 𝑤 → {𝑦} = {𝑤})
21eqeq2d 2100 . . . 4 (𝑦 = 𝑤 → ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝑤}))
32cbvabv 2212 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
4 sneq 3461 . . . . 5 (𝑤 = 𝑧 → {𝑤} = {𝑧})
54eqeq2d 2100 . . . 4 (𝑤 = 𝑧 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑧}))
65cbvabv 2212 . . 3 {𝑤 ∣ {𝑥𝜑} = {𝑤}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
73, 6eqtri 2109 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
87unieqi 3669 1 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
Colors of variables: wff set class
Syntax hints:   = wceq 1290  {cab 2075  {csn 3450   cuni 3659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-sn 3456  df-uni 3660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator