| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotajust | GIF version | ||
| Description: Soundness justification theorem for df-iota 5278. (Contributed by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| iotajust | ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 | . . . . 5 ⊢ (𝑦 = 𝑤 → {𝑦} = {𝑤}) | |
| 2 | 1 | eqeq2d 2241 | . . . 4 ⊢ (𝑦 = 𝑤 → ({𝑥 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ 𝜑} = {𝑤})) |
| 3 | 2 | cbvabv 2354 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} |
| 4 | sneq 3677 | . . . . 5 ⊢ (𝑤 = 𝑧 → {𝑤} = {𝑧}) | |
| 5 | 4 | eqeq2d 2241 | . . . 4 ⊢ (𝑤 = 𝑧 → ({𝑥 ∣ 𝜑} = {𝑤} ↔ {𝑥 ∣ 𝜑} = {𝑧})) |
| 6 | 5 | cbvabv 2354 | . . 3 ⊢ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
| 7 | 3, 6 | eqtri 2250 | . 2 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
| 8 | 7 | unieqi 3898 | 1 ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 {cab 2215 {csn 3666 ∪ cuni 3888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-sn 3672 df-uni 3889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |