| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqi | Unicode version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 |
|
| Ref | Expression |
|---|---|
| unieqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 |
. 2
| |
| 2 | unieq 3876 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-uni 3868 |
| This theorem is referenced by: elunirab 3880 unisn 3883 uniop 4321 unisuc 4481 unisucg 4482 univ 4544 dfiun3g 4957 op1sta 5186 op2nda 5189 dfdm2 5239 iotajust 5253 dfiota2 5255 cbviota 5259 cbviotavw 5260 sb8iota 5262 dffv4g 5600 funfvdm2f 5672 riotauni 5934 1st0 6260 2nd0 6261 unielxp 6290 brtpos0 6368 recsfval 6431 uniqs 6710 xpassen 6957 sup00 7138 suplocexprlemell 7868 uptx 14913 |
| Copyright terms: Public domain | W3C validator |