Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieqi | Unicode version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 |
Ref | Expression |
---|---|
unieqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 | |
2 | unieq 3781 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-uni 3773 |
This theorem is referenced by: elunirab 3785 unisn 3788 uniop 4215 unisuc 4373 unisucg 4374 univ 4435 dfiun3g 4842 op1sta 5066 op2nda 5069 dfdm2 5119 iotajust 5133 dfiota2 5135 cbviota 5139 sb8iota 5141 dffv4g 5464 funfvdm2f 5532 riotauni 5783 1st0 6089 2nd0 6090 unielxp 6119 brtpos0 6196 recsfval 6259 uniqs 6535 xpassen 6772 sup00 6943 suplocexprlemell 7627 uptx 12645 |
Copyright terms: Public domain | W3C validator |