![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieqi | Unicode version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
unieqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | unieq 3845 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3837 |
This theorem is referenced by: elunirab 3849 unisn 3852 uniop 4285 unisuc 4445 unisucg 4446 univ 4508 dfiun3g 4920 op1sta 5148 op2nda 5151 dfdm2 5201 iotajust 5215 dfiota2 5217 cbviota 5221 sb8iota 5223 dffv4g 5552 funfvdm2f 5623 riotauni 5881 1st0 6199 2nd0 6200 unielxp 6229 brtpos0 6307 recsfval 6370 uniqs 6649 xpassen 6886 sup00 7064 suplocexprlemell 7775 uptx 14453 |
Copyright terms: Public domain | W3C validator |