Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieqi | Unicode version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 |
Ref | Expression |
---|---|
unieqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 | |
2 | unieq 3805 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-uni 3797 |
This theorem is referenced by: elunirab 3809 unisn 3812 uniop 4240 unisuc 4398 unisucg 4399 univ 4461 dfiun3g 4868 op1sta 5092 op2nda 5095 dfdm2 5145 iotajust 5159 dfiota2 5161 cbviota 5165 sb8iota 5167 dffv4g 5493 funfvdm2f 5561 riotauni 5815 1st0 6123 2nd0 6124 unielxp 6153 brtpos0 6231 recsfval 6294 uniqs 6571 xpassen 6808 sup00 6980 suplocexprlemell 7675 uptx 13068 |
Copyright terms: Public domain | W3C validator |