![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieqi | Unicode version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
unieqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | unieq 3818 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-uni 3810 |
This theorem is referenced by: elunirab 3822 unisn 3825 uniop 4255 unisuc 4413 unisucg 4414 univ 4476 dfiun3g 4884 op1sta 5110 op2nda 5113 dfdm2 5163 iotajust 5177 dfiota2 5179 cbviota 5183 sb8iota 5185 dffv4g 5512 funfvdm2f 5581 riotauni 5836 1st0 6144 2nd0 6145 unielxp 6174 brtpos0 6252 recsfval 6315 uniqs 6592 xpassen 6829 sup00 7001 suplocexprlemell 7711 uptx 13667 |
Copyright terms: Public domain | W3C validator |