| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unieqi | Unicode version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| unieqi.1 | 
 | 
| Ref | Expression | 
|---|---|
| unieqi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unieqi.1 | 
. 2
 | |
| 2 | unieq 3848 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 | 
| This theorem is referenced by: elunirab 3852 unisn 3855 uniop 4288 unisuc 4448 unisucg 4449 univ 4511 dfiun3g 4923 op1sta 5151 op2nda 5154 dfdm2 5204 iotajust 5218 dfiota2 5220 cbviota 5224 sb8iota 5226 dffv4g 5555 funfvdm2f 5626 riotauni 5884 1st0 6202 2nd0 6203 unielxp 6232 brtpos0 6310 recsfval 6373 uniqs 6652 xpassen 6889 sup00 7069 suplocexprlemell 7780 uptx 14510 | 
| Copyright terms: Public domain | W3C validator |