ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq2dv GIF version

Theorem ixpeq2dv 6692
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2dv (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq2dv
StepHypRef Expression
1 ixpeq2dv.1 . . 3 (𝜑𝐵 = 𝐶)
21adantr 274 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32ixpeq2dva 6691 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Xcixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-in 3127  df-ss 3134  df-ixp 6677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator