ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvixp Unicode version

Theorem cbvixp 6860
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
cbvixp.1  |-  F/_ y B
cbvixp.2  |-  F/_ x C
cbvixp.3  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvixp  |-  X_ x  e.  A  B  =  X_ y  e.  A  C
Distinct variable group:    x, A, y
Allowed substitution hints:    B( x, y)    C( x, y)

Proof of Theorem cbvixp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cbvixp.1 . . . . . 6  |-  F/_ y B
21nfel2 2385 . . . . 5  |-  F/ y ( f `  x
)  e.  B
3 cbvixp.2 . . . . . 6  |-  F/_ x C
43nfel2 2385 . . . . 5  |-  F/ x
( f `  y
)  e.  C
5 fveq2 5626 . . . . . 6  |-  ( x  =  y  ->  (
f `  x )  =  ( f `  y ) )
6 cbvixp.3 . . . . . 6  |-  ( x  =  y  ->  B  =  C )
75, 6eleq12d 2300 . . . . 5  |-  ( x  =  y  ->  (
( f `  x
)  e.  B  <->  ( f `  y )  e.  C
) )
82, 4, 7cbvral 2761 . . . 4  |-  ( A. x  e.  A  (
f `  x )  e.  B  <->  A. y  e.  A  ( f `  y
)  e.  C )
98anbi2i 457 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B )  <->  ( f  Fn  A  /\  A. y  e.  A  ( f `  y )  e.  C
) )
109abbii 2345 . 2  |-  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B
) }  =  {
f  |  ( f  Fn  A  /\  A. y  e.  A  (
f `  y )  e.  C ) }
11 dfixp 6845 . 2  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) }
12 dfixp 6845 . 2  |-  X_ y  e.  A  C  =  { f  |  ( f  Fn  A  /\  A. y  e.  A  ( f `  y )  e.  C ) }
1310, 11, 123eqtr4i 2260 1  |-  X_ x  e.  A  B  =  X_ y  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   F/_wnfc 2359   A.wral 2508    Fn wfn 5312   ` cfv 5317   X_cixp 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fn 5320  df-fv 5325  df-ixp 6844
This theorem is referenced by:  cbvixpv  6861  mptelixpg  6879  prdsbas3  13315
  Copyright terms: Public domain W3C validator