| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modc | Unicode version | ||
| Description: Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.) |
| Ref | Expression |
|---|---|
| modc.1 |
|
| Ref | Expression |
|---|---|
| modc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modc.1 |
. . 3
| |
| 2 | 1 | mo23 2096 |
. 2
|
| 3 | exmiddc 838 |
. . 3
| |
| 4 | 1 | mor 2097 |
. . . 4
|
| 5 | 1 | mo2n 2083 |
. . . . 5
|
| 6 | 5 | a1d 22 |
. . . 4
|
| 7 | 4, 6 | jaoi 718 |
. . 3
|
| 8 | 3, 7 | syl 14 |
. 2
|
| 9 | 2, 8 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: mo2dc 2110 |
| Copyright terms: Public domain | W3C validator |