ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modc Unicode version

Theorem modc 2057
Description: Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.)
Hypothesis
Ref Expression
modc.1  |-  F/ y
ph
Assertion
Ref Expression
modc  |-  (DECID  E. x ph  ->  ( E. y A. x ( ph  ->  x  =  y )  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem modc
StepHypRef Expression
1 modc.1 . . 3  |-  F/ y
ph
21mo23 2055 . 2  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
3 exmiddc 826 . . 3  |-  (DECID  E. x ph  ->  ( E. x ph  \/  -.  E. x ph ) )
41mor 2056 . . . 4  |-  ( E. x ph  ->  ( A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y )  ->  E. y A. x ( ph  ->  x  =  y ) ) )
51mo2n 2042 . . . . 5  |-  ( -. 
E. x ph  ->  E. y A. x (
ph  ->  x  =  y ) )
65a1d 22 . . . 4  |-  ( -. 
E. x ph  ->  ( A. x A. y
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  E. y A. x ( ph  ->  x  =  y ) ) )
74, 6jaoi 706 . . 3  |-  ( ( E. x ph  \/  -.  E. x ph )  ->  ( A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y )  ->  E. y A. x (
ph  ->  x  =  y ) ) )
83, 7syl 14 . 2  |-  (DECID  E. x ph  ->  ( A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y )  ->  E. y A. x (
ph  ->  x  =  y ) ) )
92, 8impbid2 142 1  |-  (DECID  E. x ph  ->  ( E. y A. x ( ph  ->  x  =  y )  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824   A.wal 1341   F/wnf 1448   E.wex 1480   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751
This theorem is referenced by:  mo2dc  2069
  Copyright terms: Public domain W3C validator