ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modc GIF version

Theorem modc 2098
Description: Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.)
Hypothesis
Ref Expression
modc.1 𝑦𝜑
Assertion
Ref Expression
modc (DECID𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem modc
StepHypRef Expression
1 modc.1 . . 3 𝑦𝜑
21mo23 2096 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
3 exmiddc 838 . . 3 (DECID𝑥𝜑 → (∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
41mor 2097 . . . 4 (∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
51mo2n 2083 . . . . 5 (¬ ∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
65a1d 22 . . . 4 (¬ ∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
74, 6jaoi 718 . . 3 ((∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑) → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
83, 7syl 14 . 2 (DECID𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
92, 8impbid2 143 1 (DECID𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  wal 1371  wnf 1484  wex 1516  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787
This theorem is referenced by:  mo2dc  2110
  Copyright terms: Public domain W3C validator