| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modc | GIF version | ||
| Description: Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.) |
| Ref | Expression |
|---|---|
| modc.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| modc | ⊢ (DECID ∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modc.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | mo23 2096 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 3 | exmiddc 838 | . . 3 ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) | |
| 4 | 1 | mor 2097 | . . . 4 ⊢ (∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 5 | 1 | mo2n 2083 | . . . . 5 ⊢ (¬ ∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 6 | 5 | a1d 22 | . . . 4 ⊢ (¬ ∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 7 | 4, 6 | jaoi 718 | . . 3 ⊢ ((∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑) → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 8 | 3, 7 | syl 14 | . 2 ⊢ (DECID ∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 9 | 2, 8 | impbid2 143 | 1 ⊢ (DECID ∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 ∀wal 1371 Ⅎwnf 1484 ∃wex 1516 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: mo2dc 2110 |
| Copyright terms: Public domain | W3C validator |