Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > modc | GIF version |
Description: Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.) |
Ref | Expression |
---|---|
modc.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
modc | ⊢ (DECID ∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modc.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | mo23 2055 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
3 | exmiddc 826 | . . 3 ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) | |
4 | 1 | mor 2056 | . . . 4 ⊢ (∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
5 | 1 | mo2n 2042 | . . . . 5 ⊢ (¬ ∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
6 | 5 | a1d 22 | . . . 4 ⊢ (¬ ∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
7 | 4, 6 | jaoi 706 | . . 3 ⊢ ((∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑) → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
8 | 3, 7 | syl 14 | . 2 ⊢ (DECID ∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
9 | 2, 8 | impbid2 142 | 1 ⊢ (DECID ∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 |
This theorem is referenced by: mo2dc 2069 |
Copyright terms: Public domain | W3C validator |