ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2dc Unicode version

Theorem mo2dc 2133
Description: Alternate definition of "at most one" where existence is decidable. (Contributed by Jim Kingdon, 2-Jul-2018.)
Hypothesis
Ref Expression
mo2dc.1  |-  F/ y
ph
Assertion
Ref Expression
mo2dc  |-  (DECID  E. x ph  ->  ( E* x ph 
<->  E. y A. x
( ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo2dc
StepHypRef Expression
1 mo2dc.1 . . . 4  |-  F/ y
ph
21nfri 1565 . . 3  |-  ( ph  ->  A. y ph )
32mo3h 2131 . 2  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
41modc 2121 . 2  |-  (DECID  E. x ph  ->  ( E. y A. x ( ph  ->  x  =  y )  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
53, 4bitr4id 199 1  |-  (DECID  E. x ph  ->  ( E* x ph 
<->  E. y A. x
( ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839   A.wal 1393   F/wnf 1506   E.wex 1538   [wsb 1808   E*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator