ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2dc Unicode version

Theorem mo2dc 2111
Description: Alternate definition of "at most one" where existence is decidable. (Contributed by Jim Kingdon, 2-Jul-2018.)
Hypothesis
Ref Expression
mo2dc.1  |-  F/ y
ph
Assertion
Ref Expression
mo2dc  |-  (DECID  E. x ph  ->  ( E* x ph 
<->  E. y A. x
( ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo2dc
StepHypRef Expression
1 mo2dc.1 . . . 4  |-  F/ y
ph
21nfri 1543 . . 3  |-  ( ph  ->  A. y ph )
32mo3h 2109 . 2  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
41modc 2099 . 2  |-  (DECID  E. x ph  ->  ( E. y A. x ( ph  ->  x  =  y )  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
53, 4bitr4id 199 1  |-  (DECID  E. x ph  ->  ( E* x ph 
<->  E. y A. x
( ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836   A.wal 1371   F/wnf 1484   E.wex 1516   [wsb 1786   E*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator