ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2dc Unicode version

Theorem mo2dc 2091
Description: Alternate definition of "at most one" where existence is decidable. (Contributed by Jim Kingdon, 2-Jul-2018.)
Hypothesis
Ref Expression
mo2dc.1  |-  F/ y
ph
Assertion
Ref Expression
mo2dc  |-  (DECID  E. x ph  ->  ( E* x ph 
<->  E. y A. x
( ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo2dc
StepHypRef Expression
1 mo2dc.1 . . . 4  |-  F/ y
ph
21nfri 1529 . . 3  |-  ( ph  ->  A. y ph )
32mo3h 2089 . 2  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
41modc 2079 . 2  |-  (DECID  E. x ph  ->  ( E. y A. x ( ph  ->  x  =  y )  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
53, 4bitr4id 199 1  |-  (DECID  E. x ph  ->  ( E* x ph 
<->  E. y A. x
( ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835   A.wal 1361   F/wnf 1470   E.wex 1502   [wsb 1772   E*wmo 2037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator