ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123i Unicode version

Theorem mpoeq123i 5905
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpoeq123i.1  |-  A  =  D
mpoeq123i.2  |-  B  =  E
mpoeq123i.3  |-  C  =  F
Assertion
Ref Expression
mpoeq123i  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )

Proof of Theorem mpoeq123i
StepHypRef Expression
1 mpoeq123i.1 . . . 4  |-  A  =  D
21a1i 9 . . 3  |-  ( T. 
->  A  =  D
)
3 mpoeq123i.2 . . . 4  |-  B  =  E
43a1i 9 . . 3  |-  ( T. 
->  B  =  E
)
5 mpoeq123i.3 . . . 4  |-  C  =  F
65a1i 9 . . 3  |-  ( T. 
->  C  =  F
)
72, 4, 6mpoeq123dv 5904 . 2  |-  ( T. 
->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
87mptru 1352 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )
Colors of variables: wff set class
Syntax hints:    = wceq 1343   T. wtru 1344    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  ofmres  6104
  Copyright terms: Public domain W3C validator