ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123i Unicode version

Theorem mpoeq123i 6010
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpoeq123i.1  |-  A  =  D
mpoeq123i.2  |-  B  =  E
mpoeq123i.3  |-  C  =  F
Assertion
Ref Expression
mpoeq123i  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )

Proof of Theorem mpoeq123i
StepHypRef Expression
1 mpoeq123i.1 . . . 4  |-  A  =  D
21a1i 9 . . 3  |-  ( T. 
->  A  =  D
)
3 mpoeq123i.2 . . . 4  |-  B  =  E
43a1i 9 . . 3  |-  ( T. 
->  B  =  E
)
5 mpoeq123i.3 . . . 4  |-  C  =  F
65a1i 9 . . 3  |-  ( T. 
->  C  =  F
)
72, 4, 6mpoeq123dv 6009 . 2  |-  ( T. 
->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
87mptru 1382 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   T. wtru 1374    e. cmpo 5948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-oprab 5950  df-mpo 5951
This theorem is referenced by:  ofmres  6223
  Copyright terms: Public domain W3C validator