ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123i Unicode version

Theorem mpoeq123i 5916
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpoeq123i.1  |-  A  =  D
mpoeq123i.2  |-  B  =  E
mpoeq123i.3  |-  C  =  F
Assertion
Ref Expression
mpoeq123i  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )

Proof of Theorem mpoeq123i
StepHypRef Expression
1 mpoeq123i.1 . . . 4  |-  A  =  D
21a1i 9 . . 3  |-  ( T. 
->  A  =  D
)
3 mpoeq123i.2 . . . 4  |-  B  =  E
43a1i 9 . . 3  |-  ( T. 
->  B  =  E
)
5 mpoeq123i.3 . . . 4  |-  C  =  F
65a1i 9 . . 3  |-  ( T. 
->  C  =  F
)
72, 4, 6mpoeq123dv 5915 . 2  |-  ( T. 
->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
87mptru 1357 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )
Colors of variables: wff set class
Syntax hints:    = wceq 1348   T. wtru 1349    e. cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-oprab 5857  df-mpo 5858
This theorem is referenced by:  ofmres  6115
  Copyright terms: Public domain W3C validator