ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-oprab Unicode version

Definition df-oprab 5971
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally  x,  y, and  z are distinct, although the definition doesn't strictly require it. See df-ov 5970 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpo 6104. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
Distinct variable groups:    x, w    y, w    z, w    ph, w
Allowed substitution hints:    ph( x, y, z)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 vz . . 3  setvar  z
51, 2, 3, 4coprab 5968 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ph }
6 vw . . . . . . . . 9  setvar  w
76cv 1372 . . . . . . . 8  class  w
82cv 1372 . . . . . . . . . 10  class  x
93cv 1372 . . . . . . . . . 10  class  y
108, 9cop 3646 . . . . . . . . 9  class  <. x ,  y >.
114cv 1372 . . . . . . . . 9  class  z
1210, 11cop 3646 . . . . . . . 8  class  <. <. x ,  y >. ,  z
>.
137, 12wceq 1373 . . . . . . 7  wff  w  = 
<. <. x ,  y
>. ,  z >.
1413, 1wa 104 . . . . . 6  wff  ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )
1514, 4wex 1516 . . . . 5  wff  E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )
1615, 3wex 1516 . . . 4  wff  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
1716, 2wex 1516 . . 3  wff  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )
1817, 6cab 2193 . 2  class  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
195, 18wceq 1373 1  wff  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
Colors of variables: wff set class
This definition is referenced by:  oprabid  5999  dfoprab2  6015  nfoprab1  6017  nfoprab2  6018  nfoprab3  6019  nfoprab  6020  oprabbid  6021  ssoprab2  6024  mpo0  6038  cbvoprab2  6041  eloprabga  6055  oprabrexex2  6238  eloprabi  6305  cnvoprab  6343  dftpos3  6371
  Copyright terms: Public domain W3C validator