ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-oprab Unicode version

Definition df-oprab 5947
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally  x,  y, and  z are distinct, although the definition doesn't strictly require it. See df-ov 5946 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpo 6080. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
Distinct variable groups:    x, w    y, w    z, w    ph, w
Allowed substitution hints:    ph( x, y, z)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 vz . . 3  setvar  z
51, 2, 3, 4coprab 5944 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ph }
6 vw . . . . . . . . 9  setvar  w
76cv 1371 . . . . . . . 8  class  w
82cv 1371 . . . . . . . . . 10  class  x
93cv 1371 . . . . . . . . . 10  class  y
108, 9cop 3635 . . . . . . . . 9  class  <. x ,  y >.
114cv 1371 . . . . . . . . 9  class  z
1210, 11cop 3635 . . . . . . . 8  class  <. <. x ,  y >. ,  z
>.
137, 12wceq 1372 . . . . . . 7  wff  w  = 
<. <. x ,  y
>. ,  z >.
1413, 1wa 104 . . . . . 6  wff  ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )
1514, 4wex 1514 . . . . 5  wff  E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )
1615, 3wex 1514 . . . 4  wff  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
1716, 2wex 1514 . . 3  wff  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )
1817, 6cab 2190 . 2  class  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
195, 18wceq 1372 1  wff  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
Colors of variables: wff set class
This definition is referenced by:  oprabid  5975  dfoprab2  5991  nfoprab1  5993  nfoprab2  5994  nfoprab3  5995  nfoprab  5996  oprabbid  5997  ssoprab2  6000  mpo0  6014  cbvoprab2  6017  eloprabga  6031  oprabrexex2  6214  eloprabi  6281  cnvoprab  6319  dftpos3  6347
  Copyright terms: Public domain W3C validator