Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoeq123i | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.) |
Ref | Expression |
---|---|
mpoeq123i.1 | ⊢ 𝐴 = 𝐷 |
mpoeq123i.2 | ⊢ 𝐵 = 𝐸 |
mpoeq123i.3 | ⊢ 𝐶 = 𝐹 |
Ref | Expression |
---|---|
mpoeq123i | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123i.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 = 𝐷) |
3 | mpoeq123i.2 | . . . 4 ⊢ 𝐵 = 𝐸 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = 𝐸) |
5 | mpoeq123i.3 | . . . 4 ⊢ 𝐶 = 𝐹 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → 𝐶 = 𝐹) |
7 | 2, 4, 6 | mpoeq123dv 5915 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
8 | 7 | mptru 1357 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ⊤wtru 1349 ∈ cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: ofmres 6115 |
Copyright terms: Public domain | W3C validator |