| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoeq123i | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.) |
| Ref | Expression |
|---|---|
| mpoeq123i.1 | ⊢ 𝐴 = 𝐷 |
| mpoeq123i.2 | ⊢ 𝐵 = 𝐸 |
| mpoeq123i.3 | ⊢ 𝐶 = 𝐹 |
| Ref | Expression |
|---|---|
| mpoeq123i | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123i.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 = 𝐷) |
| 3 | mpoeq123i.2 | . . . 4 ⊢ 𝐵 = 𝐸 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = 𝐸) |
| 5 | mpoeq123i.3 | . . . 4 ⊢ 𝐶 = 𝐹 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → 𝐶 = 𝐹) |
| 7 | 2, 4, 6 | mpoeq123dv 5984 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| 8 | 7 | mptru 1373 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊤wtru 1365 ∈ cmpo 5924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-oprab 5926 df-mpo 5927 |
| This theorem is referenced by: ofmres 6193 |
| Copyright terms: Public domain | W3C validator |