ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123i GIF version

Theorem mpoeq123i 5985
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpoeq123i.1 𝐴 = 𝐷
mpoeq123i.2 𝐵 = 𝐸
mpoeq123i.3 𝐶 = 𝐹
Assertion
Ref Expression
mpoeq123i (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)

Proof of Theorem mpoeq123i
StepHypRef Expression
1 mpoeq123i.1 . . . 4 𝐴 = 𝐷
21a1i 9 . . 3 (⊤ → 𝐴 = 𝐷)
3 mpoeq123i.2 . . . 4 𝐵 = 𝐸
43a1i 9 . . 3 (⊤ → 𝐵 = 𝐸)
5 mpoeq123i.3 . . . 4 𝐶 = 𝐹
65a1i 9 . . 3 (⊤ → 𝐶 = 𝐹)
72, 4, 6mpoeq123dv 5984 . 2 (⊤ → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
87mptru 1373 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wtru 1365  cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  ofmres  6193
  Copyright terms: Public domain W3C validator