Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoeq3dva | Unicode version |
Description: Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013.) |
Ref | Expression |
---|---|
mpoeq3dva.1 |
Ref | Expression |
---|---|
mpoeq3dva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3dva.1 | . . . . . 6 | |
2 | 1 | 3expb 1194 | . . . . 5 |
3 | 2 | eqeq2d 2177 | . . . 4 |
4 | 3 | pm5.32da 448 | . . 3 |
5 | 4 | oprabbidv 5896 | . 2 |
6 | df-mpo 5847 | . 2 | |
7 | df-mpo 5847 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 coprab 5843 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: mpoeq3ia 5907 mpoeq3dv 5908 ofeq 6052 fmpoco 6184 mapxpen 6814 seqeq2 10384 seqeq3 10385 cnmpt2t 12933 cnmpt22 12934 cnmptcom 12938 |
Copyright terms: Public domain | W3C validator |