| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoeq3dva | Unicode version | ||
| Description: Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013.) |
| Ref | Expression |
|---|---|
| mpoeq3dva.1 |
|
| Ref | Expression |
|---|---|
| mpoeq3dva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dva.1 |
. . . . . 6
| |
| 2 | 1 | 3expb 1207 |
. . . . 5
|
| 3 | 2 | eqeq2d 2219 |
. . . 4
|
| 4 | 3 | pm5.32da 452 |
. . 3
|
| 5 | 4 | oprabbidv 6022 |
. 2
|
| 6 | df-mpo 5972 |
. 2
| |
| 7 | df-mpo 5972 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-oprab 5971 df-mpo 5972 |
| This theorem is referenced by: mpoeq3ia 6033 mpoeq3dv 6034 ofeq 6184 fmpoco 6325 mapxpen 6970 seqeq2 10633 seqeq3 10634 grpsubpropd2 13552 mulgpropdg 13615 cnmpt2t 14880 cnmpt22 14881 cnmptcom 14885 |
| Copyright terms: Public domain | W3C validator |