ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmres Unicode version

Theorem ofmres 6034
Description: Equivalent expressions for a restriction of the function operation map. Unlike  oF R which is a proper class,  (  oF R  |`  ( A  X.  B
) ) can be a set by ofmresex 6035, allowing it to be used as a function or structure argument. By ofmresval 5993, the restricted operation map values are the same as the original values, allowing theorems for  oF R to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres  |-  (  oF R  |`  ( A  X.  B ) )  =  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
Distinct variable groups:    f, g, A    B, f, g    R, f, g

Proof of Theorem ofmres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssv 3119 . . 3  |-  A  C_  _V
2 ssv 3119 . . 3  |-  B  C_  _V
3 resmpo 5869 . . 3  |-  ( ( A  C_  _V  /\  B  C_ 
_V )  ->  (
( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  |`  ( A  X.  B
) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) ) )
41, 2, 3mp2an 422 . 2  |-  ( ( f  e.  _V , 
g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  |`  ( A  X.  B
) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
5 df-of 5982 . . 3  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
65reseq1i 4815 . 2  |-  (  oF R  |`  ( A  X.  B ) )  =  ( ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )  |`  ( A  X.  B ) )
7 eqid 2139 . . 3  |-  A  =  A
8 eqid 2139 . . 3  |-  B  =  B
9 vex 2689 . . . 4  |-  f  e. 
_V
10 vex 2689 . . . 4  |-  g  e. 
_V
119dmex 4805 . . . . . 6  |-  dom  f  e.  _V
1211inex1 4062 . . . . 5  |-  ( dom  f  i^i  dom  g
)  e.  _V
1312mptex 5646 . . . 4  |-  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) )  e.  _V
145ovmpt4g 5893 . . . 4  |-  ( ( f  e.  _V  /\  g  e.  _V  /\  (
x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) )  e. 
_V )  ->  (
f  oF R g )  =  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
159, 10, 13, 14mp3an 1315 . . 3  |-  ( f  oF R g )  =  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) )
167, 8, 15mpoeq123i 5834 . 2  |-  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
174, 6, 163eqtr4i 2170 1  |-  (  oF R  |`  ( A  X.  B ) )  =  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1331    e. wcel 1480   _Vcvv 2686    i^i cin 3070    C_ wss 3071    |-> cmpt 3989    X. cxp 4537   dom cdm 4539    |` cres 4541   ` cfv 5123  (class class class)co 5774    e. cmpo 5776    oFcof 5980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator