ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmres Unicode version

Theorem ofmres 6139
Description: Equivalent expressions for a restriction of the function operation map. Unlike  oF R which is a proper class,  (  oF R  |`  ( A  X.  B
) ) can be a set by ofmresex 6140, allowing it to be used as a function or structure argument. By ofmresval 6096, the restricted operation map values are the same as the original values, allowing theorems for  oF R to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres  |-  (  oF R  |`  ( A  X.  B ) )  =  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
Distinct variable groups:    f, g, A    B, f, g    R, f, g

Proof of Theorem ofmres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssv 3179 . . 3  |-  A  C_  _V
2 ssv 3179 . . 3  |-  B  C_  _V
3 resmpo 5975 . . 3  |-  ( ( A  C_  _V  /\  B  C_ 
_V )  ->  (
( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  |`  ( A  X.  B
) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) ) )
41, 2, 3mp2an 426 . 2  |-  ( ( f  e.  _V , 
g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  |`  ( A  X.  B
) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
5 df-of 6085 . . 3  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
65reseq1i 4905 . 2  |-  (  oF R  |`  ( A  X.  B ) )  =  ( ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )  |`  ( A  X.  B ) )
7 eqid 2177 . . 3  |-  A  =  A
8 eqid 2177 . . 3  |-  B  =  B
9 vex 2742 . . . 4  |-  f  e. 
_V
10 vex 2742 . . . 4  |-  g  e. 
_V
119dmex 4895 . . . . . 6  |-  dom  f  e.  _V
1211inex1 4139 . . . . 5  |-  ( dom  f  i^i  dom  g
)  e.  _V
1312mptex 5744 . . . 4  |-  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) )  e.  _V
145ovmpt4g 5999 . . . 4  |-  ( ( f  e.  _V  /\  g  e.  _V  /\  (
x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) )  e. 
_V )  ->  (
f  oF R g )  =  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
159, 10, 13, 14mp3an 1337 . . 3  |-  ( f  oF R g )  =  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) )
167, 8, 15mpoeq123i 5940 . 2  |-  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
174, 6, 163eqtr4i 2208 1  |-  (  oF R  |`  ( A  X.  B ) )  =  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   _Vcvv 2739    i^i cin 3130    C_ wss 3131    |-> cmpt 4066    X. cxp 4626   dom cdm 4628    |` cres 4630   ` cfv 5218  (class class class)co 5877    e. cmpo 5879    oFcof 6083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator