Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofmres | Unicode version |
Description: Equivalent expressions for a restriction of the function operation map. Unlike which is a proper class, can be a set by ofmresex 6075, allowing it to be used as a function or structure argument. By ofmresval 6033, the restricted operation map values are the same as the original values, allowing theorems for to be reused. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ofmres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3146 | . . 3 | |
2 | ssv 3146 | . . 3 | |
3 | resmpo 5909 | . . 3 | |
4 | 1, 2, 3 | mp2an 423 | . 2 |
5 | df-of 6022 | . . 3 | |
6 | 5 | reseq1i 4855 | . 2 |
7 | eqid 2154 | . . 3 | |
8 | eqid 2154 | . . 3 | |
9 | vex 2712 | . . . 4 | |
10 | vex 2712 | . . . 4 | |
11 | 9 | dmex 4845 | . . . . . 6 |
12 | 11 | inex1 4094 | . . . . 5 |
13 | 12 | mptex 5686 | . . . 4 |
14 | 5 | ovmpt4g 5933 | . . . 4 |
15 | 9, 10, 13, 14 | mp3an 1316 | . . 3 |
16 | 7, 8, 15 | mpoeq123i 5874 | . 2 |
17 | 4, 6, 16 | 3eqtr4i 2185 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 wcel 2125 cvv 2709 cin 3097 wss 3098 cmpt 4021 cxp 4577 cdm 4579 cres 4581 cfv 5163 (class class class)co 5814 cmpo 5816 cof 6020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-of 6022 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |