Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoeq123dv | Unicode version |
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | |
mpoeq123dv.2 | |
mpoeq123dv.3 |
Ref | Expression |
---|---|
mpoeq123dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dv.1 | . 2 | |
2 | mpoeq123dv.2 | . . 3 | |
3 | 2 | adantr 274 | . 2 |
4 | mpoeq123dv.3 | . . 3 | |
5 | 4 | adantr 274 | . 2 |
6 | 1, 3, 5 | mpoeq123dva 5903 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: mpoeq123i 5905 plusffvalg 12593 blfvalps 13035 |
Copyright terms: Public domain | W3C validator |