Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoeq123dv | Unicode version |
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | |
mpoeq123dv.2 | |
mpoeq123dv.3 |
Ref | Expression |
---|---|
mpoeq123dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dv.1 | . 2 | |
2 | mpoeq123dv.2 | . . 3 | |
3 | 2 | adantr 274 | . 2 |
4 | mpoeq123dv.3 | . . 3 | |
5 | 4 | adantr 274 | . 2 |
6 | 1, 3, 5 | mpoeq123dva 5918 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1349 wcel 2142 cmpo 5859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-11 1500 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-oprab 5861 df-mpo 5862 |
This theorem is referenced by: mpoeq123i 5920 plusffvalg 12638 grpsubfvalg 12770 grpsubpropdg 12825 mulgfvalg 12836 blfvalps 13296 |
Copyright terms: Public domain | W3C validator |