ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123dv Unicode version

Theorem mpoeq123dv 5919
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.)
Hypotheses
Ref Expression
mpoeq123dv.1  |-  ( ph  ->  A  =  D )
mpoeq123dv.2  |-  ( ph  ->  B  =  E )
mpoeq123dv.3  |-  ( ph  ->  C  =  F )
Assertion
Ref Expression
mpoeq123dv  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    D( x, y)    E( x, y)    F( x, y)

Proof of Theorem mpoeq123dv
StepHypRef Expression
1 mpoeq123dv.1 . 2  |-  ( ph  ->  A  =  D )
2 mpoeq123dv.2 . . 3  |-  ( ph  ->  B  =  E )
32adantr 274 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  E )
4 mpoeq123dv.3 . . 3  |-  ( ph  ->  C  =  F )
54adantr 274 . 2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  =  F )
61, 3, 5mpoeq123dva 5918 1  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1349    e. wcel 2142    e. cmpo 5859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-11 1500  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-tru 1352  df-nf 1455  df-sb 1757  df-clab 2158  df-cleq 2164  df-clel 2167  df-oprab 5861  df-mpo 5862
This theorem is referenced by:  mpoeq123i  5920  plusffvalg  12638  grpsubfvalg  12770  grpsubpropdg  12825  mulgfvalg  12836  blfvalps  13296
  Copyright terms: Public domain W3C validator