ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123dv Unicode version

Theorem mpoeq123dv 5988
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.)
Hypotheses
Ref Expression
mpoeq123dv.1  |-  ( ph  ->  A  =  D )
mpoeq123dv.2  |-  ( ph  ->  B  =  E )
mpoeq123dv.3  |-  ( ph  ->  C  =  F )
Assertion
Ref Expression
mpoeq123dv  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    D( x, y)    E( x, y)    F( x, y)

Proof of Theorem mpoeq123dv
StepHypRef Expression
1 mpoeq123dv.1 . 2  |-  ( ph  ->  A  =  D )
2 mpoeq123dv.2 . . 3  |-  ( ph  ->  B  =  E )
32adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  E )
4 mpoeq123dv.3 . . 3  |-  ( ph  ->  C  =  F )
54adantr 276 . 2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  =  F )
61, 3, 5mpoeq123dva 5987 1  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    e. cmpo 5927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-oprab 5929  df-mpo 5930
This theorem is referenced by:  mpoeq123i  5989  prdsex  12971  prdsval  12975  plusffvalg  13064  grpsubfvalg  13247  grpsubpropdg  13306  mulgfvalg  13327  mulgpropdg  13370  dvrfvald  13765  scaffvalg  13938  psrval  14296  blfvalps  14705
  Copyright terms: Public domain W3C validator