| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoeq123dv | Unicode version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 |
|
| mpoeq123dv.2 |
|
| mpoeq123dv.3 |
|
| Ref | Expression |
|---|---|
| mpoeq123dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dv.1 |
. 2
| |
| 2 | mpoeq123dv.2 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | mpoeq123dv.3 |
. . 3
| |
| 5 | 4 | adantr 276 |
. 2
|
| 6 | 1, 3, 5 | mpoeq123dva 6006 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-oprab 5948 df-mpo 5949 |
| This theorem is referenced by: mpoeq123i 6008 prdsex 13101 prdsval 13105 plusffvalg 13194 grpsubfvalg 13377 grpsubpropdg 13436 mulgfvalg 13457 mulgpropdg 13500 dvrfvald 13895 scaffvalg 14068 psrval 14428 blfvalps 14857 |
| Copyright terms: Public domain | W3C validator |