| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpoeq123dv | Unicode version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| mpoeq123dv.1 | 
 | 
| mpoeq123dv.2 | 
 | 
| mpoeq123dv.3 | 
 | 
| Ref | Expression | 
|---|---|
| mpoeq123dv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpoeq123dv.1 | 
. 2
 | |
| 2 | mpoeq123dv.2 | 
. . 3
 | |
| 3 | 2 | adantr 276 | 
. 2
 | 
| 4 | mpoeq123dv.3 | 
. . 3
 | |
| 5 | 4 | adantr 276 | 
. 2
 | 
| 6 | 1, 3, 5 | mpoeq123dva 5983 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-oprab 5926 df-mpo 5927 | 
| This theorem is referenced by: mpoeq123i 5985 prdsex 12940 plusffvalg 13005 grpsubfvalg 13177 grpsubpropdg 13236 mulgfvalg 13251 mulgpropdg 13294 dvrfvald 13689 scaffvalg 13862 psrval 14220 blfvalps 14621 | 
| Copyright terms: Public domain | W3C validator |