ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123dv Unicode version

Theorem mpoeq123dv 6066
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.)
Hypotheses
Ref Expression
mpoeq123dv.1  |-  ( ph  ->  A  =  D )
mpoeq123dv.2  |-  ( ph  ->  B  =  E )
mpoeq123dv.3  |-  ( ph  ->  C  =  F )
Assertion
Ref Expression
mpoeq123dv  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    D( x, y)    E( x, y)    F( x, y)

Proof of Theorem mpoeq123dv
StepHypRef Expression
1 mpoeq123dv.1 . 2  |-  ( ph  ->  A  =  D )
2 mpoeq123dv.2 . . 3  |-  ( ph  ->  B  =  E )
32adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  E )
4 mpoeq123dv.3 . . 3  |-  ( ph  ->  C  =  F )
54adantr 276 . 2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  =  F )
61, 3, 5mpoeq123dva 6065 1  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-oprab 6005  df-mpo 6006
This theorem is referenced by:  mpoeq123i  6067  prdsex  13302  prdsval  13306  plusffvalg  13395  grpsubfvalg  13578  grpsubpropdg  13637  mulgfvalg  13658  mulgpropdg  13701  dvrfvald  14097  scaffvalg  14270  psrval  14630  blfvalps  15059
  Copyright terms: Public domain W3C validator