ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpo Unicode version

Definition df-mpo 5880
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from  x ,  y (in  A  X.  B) to  B ( x ,  y )". An extension of df-mpt 4067 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
Distinct variable groups:    x, z    y,
z    z, A    z, B    z, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3  setvar  x
2 vy . . 3  setvar  y
3 cA . . 3  class  A
4 cB . . 3  class  B
5 cC . . 3  class  C
61, 2, 3, 4, 5cmpo 5877 . 2  class  ( x  e.  A ,  y  e.  B  |->  C )
71cv 1352 . . . . . 6  class  x
87, 3wcel 2148 . . . . 5  wff  x  e.  A
92cv 1352 . . . . . 6  class  y
109, 4wcel 2148 . . . . 5  wff  y  e.  B
118, 10wa 104 . . . 4  wff  ( x  e.  A  /\  y  e.  B )
12 vz . . . . . 6  setvar  z
1312cv 1352 . . . . 5  class  z
1413, 5wceq 1353 . . . 4  wff  z  =  C
1511, 14wa 104 . . 3  wff  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C
)
1615, 1, 2, 12coprab 5876 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C ) }
176, 16wceq 1353 1  wff  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
Colors of variables: wff set class
This definition is referenced by:  mpoeq123  5934  mpoeq123dva  5936  mpoeq3dva  5939  nfmpo1  5942  nfmpo2  5943  nfmpo  5944  mpo0  5945  cbvmpox  5953  mpov  5965  mpomptx  5966  resmpo  5973  mpofun  5977  mpo2eqb  5984  rnmpo  5985  reldmmpo  5986  ovmpt4g  5997  elmpocl  6069  fmpox  6201  f1od2  6236  tposmpo  6282  erovlem  6627  xpcomco  6826  dfplpq2  7353  dfmpq2  7354
  Copyright terms: Public domain W3C validator