ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpo Unicode version

Definition df-mpo 5939
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from  x ,  y (in  A  X.  B) to  B ( x ,  y )". An extension of df-mpt 4106 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
Distinct variable groups:    x, z    y,
z    z, A    z, B    z, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3  setvar  x
2 vy . . 3  setvar  y
3 cA . . 3  class  A
4 cB . . 3  class  B
5 cC . . 3  class  C
61, 2, 3, 4, 5cmpo 5936 . 2  class  ( x  e.  A ,  y  e.  B  |->  C )
71cv 1371 . . . . . 6  class  x
87, 3wcel 2175 . . . . 5  wff  x  e.  A
92cv 1371 . . . . . 6  class  y
109, 4wcel 2175 . . . . 5  wff  y  e.  B
118, 10wa 104 . . . 4  wff  ( x  e.  A  /\  y  e.  B )
12 vz . . . . . 6  setvar  z
1312cv 1371 . . . . 5  class  z
1413, 5wceq 1372 . . . 4  wff  z  =  C
1511, 14wa 104 . . 3  wff  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C
)
1615, 1, 2, 12coprab 5935 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C ) }
176, 16wceq 1372 1  wff  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
Colors of variables: wff set class
This definition is referenced by:  mpoeq123  5994  mpoeq123dva  5996  mpoeq3dva  5999  nfmpo1  6002  nfmpo2  6003  nfmpo  6004  mpo0  6005  cbvmpox  6013  mpov  6025  mpomptx  6026  resmpo  6033  mpofun  6037  mpo2eqb  6045  rnmpo  6046  reldmmpo  6047  ovmpt4g  6058  elmpocl  6131  fmpox  6276  f1od2  6311  tposmpo  6357  erovlem  6704  xpcomco  6903  dfplpq2  7449  dfmpq2  7450  mpomulf  8044
  Copyright terms: Public domain W3C validator