ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpo Unicode version

Definition df-mpo 5948
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from  x ,  y (in  A  X.  B) to  B ( x ,  y )". An extension of df-mpt 4106 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
Distinct variable groups:    x, z    y,
z    z, A    z, B    z, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3  setvar  x
2 vy . . 3  setvar  y
3 cA . . 3  class  A
4 cB . . 3  class  B
5 cC . . 3  class  C
61, 2, 3, 4, 5cmpo 5945 . 2  class  ( x  e.  A ,  y  e.  B  |->  C )
71cv 1371 . . . . . 6  class  x
87, 3wcel 2175 . . . . 5  wff  x  e.  A
92cv 1371 . . . . . 6  class  y
109, 4wcel 2175 . . . . 5  wff  y  e.  B
118, 10wa 104 . . . 4  wff  ( x  e.  A  /\  y  e.  B )
12 vz . . . . . 6  setvar  z
1312cv 1371 . . . . 5  class  z
1413, 5wceq 1372 . . . 4  wff  z  =  C
1511, 14wa 104 . . 3  wff  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C
)
1615, 1, 2, 12coprab 5944 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C ) }
176, 16wceq 1372 1  wff  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
Colors of variables: wff set class
This definition is referenced by:  mpoeq123  6003  mpoeq123dva  6005  mpoeq3dva  6008  nfmpo1  6011  nfmpo2  6012  nfmpo  6013  mpo0  6014  cbvmpox  6022  mpov  6034  mpomptx  6035  resmpo  6042  mpofun  6046  mpo2eqb  6054  rnmpo  6055  reldmmpo  6056  ovmpt4g  6067  elmpocl  6140  fmpox  6285  f1od2  6320  tposmpo  6366  erovlem  6713  xpcomco  6920  dfplpq2  7466  dfmpq2  7467  mpomulf  8061
  Copyright terms: Public domain W3C validator