ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpo Unicode version

Definition df-mpo 5923
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from  x ,  y (in  A  X.  B) to  B ( x ,  y )". An extension of df-mpt 4092 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
Distinct variable groups:    x, z    y,
z    z, A    z, B    z, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3  setvar  x
2 vy . . 3  setvar  y
3 cA . . 3  class  A
4 cB . . 3  class  B
5 cC . . 3  class  C
61, 2, 3, 4, 5cmpo 5920 . 2  class  ( x  e.  A ,  y  e.  B  |->  C )
71cv 1363 . . . . . 6  class  x
87, 3wcel 2164 . . . . 5  wff  x  e.  A
92cv 1363 . . . . . 6  class  y
109, 4wcel 2164 . . . . 5  wff  y  e.  B
118, 10wa 104 . . . 4  wff  ( x  e.  A  /\  y  e.  B )
12 vz . . . . . 6  setvar  z
1312cv 1363 . . . . 5  class  z
1413, 5wceq 1364 . . . 4  wff  z  =  C
1511, 14wa 104 . . 3  wff  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C
)
1615, 1, 2, 12coprab 5919 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C ) }
176, 16wceq 1364 1  wff  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
Colors of variables: wff set class
This definition is referenced by:  mpoeq123  5977  mpoeq123dva  5979  mpoeq3dva  5982  nfmpo1  5985  nfmpo2  5986  nfmpo  5987  mpo0  5988  cbvmpox  5996  mpov  6008  mpomptx  6009  resmpo  6016  mpofun  6020  mpo2eqb  6028  rnmpo  6029  reldmmpo  6030  ovmpt4g  6041  elmpocl  6113  fmpox  6253  f1od2  6288  tposmpo  6334  erovlem  6681  xpcomco  6880  dfplpq2  7414  dfmpq2  7415  mpomulf  8009
  Copyright terms: Public domain W3C validator