| Intuitionistic Logic Explorer Theorem List (p. 60 of 165) | < Previous Next > | |
| Browser slow? Try the
Unicode version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | f1ocnvfv2 5901 | The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Theorem | f1ocnvfv 5902 | Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.) |
| Theorem | f1ocnvfvb 5903 | Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.) |
| Theorem | f1ocnvdm 5904 | The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
| Theorem | f1ocnvfvrneq 5905 | If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
| Theorem | fcof1 5906 | An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Theorem | fcofo 5907 | An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| Theorem | cbvfo 5908* | Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Theorem | cbvexfo 5909* | Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) |
| Theorem | cocan1 5910 | An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| Theorem | cocan2 5911 | A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Theorem | fcof1o 5912 | Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Theorem | foeqcnvco 5913 | Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.) |
| Theorem | f1eqcocnv 5914 | Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
| Theorem | fliftrel 5915* |
|
| Theorem | fliftel 5916* |
Elementhood in the relation |
| Theorem | fliftel1 5917* |
Elementhood in the relation |
| Theorem | fliftcnv 5918* |
Converse of the relation |
| Theorem | fliftfun 5919* |
The function |
| Theorem | fliftfund 5920* |
The function |
| Theorem | fliftfuns 5921* |
The function |
| Theorem | fliftf 5922* |
The domain and range of the function |
| Theorem | fliftval 5923* |
The value of the function |
| Theorem | isoeq1 5924 | Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Theorem | isoeq2 5925 | Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Theorem | isoeq3 5926 | Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Theorem | isoeq4 5927 | Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Theorem | isoeq5 5928 | Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Theorem | nfiso 5929 | Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Theorem | isof1o 5930 | An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Theorem | isorel 5931 | An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
| Theorem | isoresbr 5932* | A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.) |
| Theorem | isoid 5933 | Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| Theorem | isocnv 5934 | Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| Theorem | isocnv2 5935 | Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
| Theorem | isores2 5936 | An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| Theorem | isores1 5937 | An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| Theorem | isores3 5938 | Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| Theorem | isotr 5939 | Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| Theorem | iso0 5940 |
The empty set is an |
| Theorem | isoini 5941 | Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.) |
| Theorem | isoini2 5942 | Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.) |
| Theorem | isoselem 5943* | Lemma for isose 5944. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| Theorem | isose 5944 | An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| Theorem | isopolem 5945 | Lemma for isopo 5946. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Theorem | isopo 5946 | An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Theorem | isosolem 5947 | Lemma for isoso 5948. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Theorem | isoso 5948 | An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Theorem | f1oiso 5949* |
Any one-to-one onto function determines an isomorphism with an induced
relation |
| Theorem | f1oiso2 5950* |
Any one-to-one onto function determines an isomorphism with an induced
relation |
| Theorem | canth 5951 |
No set |
| Syntax | crio 5952 | Extend class notation with restricted description binder. |
| Definition | df-riota 5953 |
Define restricted description binder. In case there is no unique |
| Theorem | riotaeqdv 5954* | Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.) |
| Theorem | riotabidv 5955* | Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| Theorem | riotaeqbidv 5956* | Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| Theorem | riotaexg 5957* | Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.) |
| Theorem | iotaexel 5958* | Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.) |
| Theorem | riotav 5959 | An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
| Theorem | riotauni 5960 | Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
| Theorem | nfriota1 5961* | The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Theorem | nfriotadxy 5962* | Deduction version of nfriota 5963. (Contributed by Jim Kingdon, 12-Jan-2019.) |
| Theorem | nfriota 5963* | A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
| Theorem | cbvriotavw 5964* | Change bound variable in a restricted description binder. Version of cbvriotav 5966 with a disjoint variable condition. (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.) |
| Theorem | cbvriota 5965* | Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Theorem | cbvriotav 5966* | Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Theorem | csbriotag 5967* | Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) |
| Theorem | riotacl2 5968 |
Membership law for "the unique element in (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| Theorem | riotacl 5969* | Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Theorem | riotasbc 5970 | Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Theorem | riotabidva 5971* | Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2787 analog.) (Contributed by NM, 17-Jan-2012.) |
| Theorem | riotabiia 5972 | Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2784 analog.) (Contributed by NM, 16-Jan-2012.) |
| Theorem | riota1 5973* | Property of restricted iota. Compare iota1 5292. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Theorem | riota1a 5974 | Property of iota. (Contributed by NM, 23-Aug-2011.) |
| Theorem | riota2df 5975* | A deduction version of riota2f 5976. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Theorem | riota2f 5976* |
This theorem shows a condition that allows us to represent a descriptor
with a class expression |
| Theorem | riota2 5977* |
This theorem shows a condition that allows us to represent a descriptor
with a class expression |
| Theorem | riotaeqimp 5978* | If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.) |
| Theorem | riotaprop 5979* | Properties of a restricted definite description operator. Todo (df-riota 5953 update): can some uses of riota2f 5976 be shortened with this? (Contributed by NM, 23-Nov-2013.) |
| Theorem | riota5f 5980* | A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Theorem | riota5 5981* | A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
| Theorem | riotass2 5982* | Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.) |
| Theorem | riotass 5983* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| Theorem | moriotass 5984* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.) |
| Theorem | snriota 5985 | A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
| Theorem | eusvobj2 5986* |
Specify the same property in two ways when class |
| Theorem | eusvobj1 5987* |
Specify the same object in two ways when class |
| Theorem | f1ofveu 5988* | There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
| Theorem | f1ocnvfv3 5989* | Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Theorem | riotaund 5990* | Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.) |
| Theorem | acexmidlema 5991* | Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Theorem | acexmidlemb 5992* | Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Theorem | acexmidlemph 5993* | Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Theorem | acexmidlemab 5994* | Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Theorem | acexmidlemcase 5995* |
Lemma for acexmid 5999. Here we divide the proof into cases (based
on the
disjunction implicit in an unordered pair, not the sort of case
elimination which relies on excluded middle).
The cases are (1) the choice function evaluated at
Because of the way we represent the choice function
Although it isn't exactly about the division into cases, it is also
convenient for this lemma to also include the step that if the choice
function evaluated at (Contributed by Jim Kingdon, 7-Aug-2019.) |
| Theorem | acexmidlem1 5996* | Lemma for acexmid 5999. List the cases identified in acexmidlemcase 5995 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.) |
| Theorem | acexmidlem2 5997* |
Lemma for acexmid 5999. This builds on acexmidlem1 5996 by noting that every
element of
(Note that
The set (Contributed by Jim Kingdon, 5-Aug-2019.) |
| Theorem | acexmidlemv 5998* |
Lemma for acexmid 5999.
This is acexmid 5999 with additional disjoint variable conditions,
most
notably between (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Theorem | acexmid 5999* |
The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer]
p. 483.
The statement of the axiom of choice given here is ac2 in the Metamath
Proof Explorer (version of 3-Aug-2019). In particular, note that the
choice function Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967). For this theorem stated using the df-ac 7384 and df-exmid 4278 syntaxes, see exmidac 7387. (Contributed by Jim Kingdon, 4-Aug-2019.) |
| Syntax | co 6000 |
Extend class notation to include the value of an operation |
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |