HomeHome Intuitionistic Logic Explorer
Theorem List (p. 60 of 137)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5901-6000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcbvmpov 5901* Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4059, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
 |-  ( x  =  z 
 ->  C  =  E )   &    |-  ( y  =  w  ->  E  =  D )   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  A ,  w  e.  B  |->  D )
 
Theoremdmoprab 5902* The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |- 
 dom  { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. x ,  y >.  |  E. z ph }
 
Theoremdmoprabss 5903* The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
 |- 
 dom  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
 
Theoremrnoprab 5904* The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
 |- 
 ran  { <. <. x ,  y >. ,  z >.  |  ph }  =  { z  | 
 E. x E. y ph }
 
Theoremrnoprab2 5905* The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
 |- 
 ran  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  { z  |  E. x  e.  A  E. y  e.  B  ph }
 
Theoremreldmoprab 5906* The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.)
 |- 
 Rel  dom  { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremoprabss 5907* Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph } 
 C_  ( ( _V 
 X.  _V )  X.  _V )
 
Theoremeloprabga 5908* The law of concretion for operation class abstraction. Compare elopab 4218. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y >. ,  z >.  |  ph }  <->  ps ) )
 
Theoremeloprabg 5909* The law of concretion for operation class abstraction. Compare elopab 4218. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y >. ,  z >.  |  ph }  <->  th ) )
 
Theoremssoprab2i 5910* Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( ph  ->  ps )   =>    |-  { <. <. x ,  y >. ,  z >.  |  ph }  C_  {
 <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremmpov 5911* Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
 |-  ( x  e.  _V ,  y  e.  _V  |->  C )  =  { <.
 <. x ,  y >. ,  z >.  |  z  =  C }
 
Theoremmpomptx 5912* Express a two-argument function as a one-argument function, or vice-versa. In this version 
B ( x ) is not assumed to be constant w.r.t  x. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( z  =  <. x ,  y >.  ->  C  =  D )   =>    |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
 
Theoremmpompt 5913* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
 |-  ( z  =  <. x ,  y >.  ->  C  =  D )   =>    |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
 
Theoremmpodifsnif 5914 A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
 |-  ( i  e.  ( A  \  { X }
 ) ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  ( A  \  { X }
 ) ,  j  e.  B  |->  D )
 
Theoremmposnif 5915 A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
 |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )
 
Theoremfconstmpo 5916* Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
 |-  ( ( A  X.  B )  X.  { C } )  =  ( x  e.  A ,  y  e.  B  |->  C )
 
Theoremresoprab 5917* Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
 |-  ( { <. <. x ,  y >. ,  z >.  | 
 ph }  |`  ( A  X.  B ) )  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
 
Theoremresoprab2 5918* Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( C  C_  A  /\  D  C_  B )  ->  ( { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) } )
 
Theoremresmpo 5919* Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
 |-  ( ( C  C_  A  /\  D  C_  B )  ->  ( ( x  e.  A ,  y  e.  B  |->  E )  |`  ( C  X.  D ) )  =  ( x  e.  C ,  y  e.  D  |->  E ) )
 
Theoremfunoprabg 5920* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
 |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z >.  |  ph } )
 
Theoremfunoprab 5921* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
 |- 
 E* z ph   =>    |- 
 Fun  { <. <. x ,  y >. ,  z >.  |  ph }
 
Theoremfnoprabg 5922* Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
 |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y >. ,  z >.  |  (
 ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
 
Theoremmpofun 5923* The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  Fun  F
 
Theoremfnoprab 5924* Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
 |-  ( ph  ->  E! z ps )   =>    |- 
 { <. <. x ,  y >. ,  z >.  |  (
 ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph }
 
Theoremffnov 5925* An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
 |-  ( F : ( A  X.  B ) --> C  <->  ( F  Fn  ( A  X.  B ) 
 /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
 
Theoremfovcl 5926 Closure law for an operation. (Contributed by NM, 19-Apr-2007.)
 |-  F : ( R  X.  S ) --> C   =>    |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )
 
Theoremeqfnov 5927* Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
 |-  ( ( F  Fn  ( A  X.  B ) 
 /\  G  Fn  ( C  X.  D ) ) 
 ->  ( F  =  G  <->  ( ( A  X.  B )  =  ( C  X.  D )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) ) )
 
Theoremeqfnov2 5928* Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
 |-  ( ( F  Fn  ( A  X.  B ) 
 /\  G  Fn  ( A  X.  B ) ) 
 ->  ( F  =  G  <->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) ) )
 
Theoremfnovim 5929* Representation of a function in terms of its values. (Contributed by Jim Kingdon, 16-Jan-2019.)
 |-  ( F  Fn  ( A  X.  B )  ->  F  =  ( x  e.  A ,  y  e.  B  |->  ( x F y ) ) )
 
Theoremmpo2eqb 5930* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 5928. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D ) )
 
Theoremrnmpo 5931* The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
 
Theoremreldmmpo 5932* The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  Rel  dom  F
 
Theoremelrnmpog 5933* Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( D  e.  V  ->  ( D  e.  ran 
 F 
 <-> 
 E. x  e.  A  E. y  e.  B  D  =  C )
 )
 
Theoremelrnmpo 5934* Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
 
Theoremralrnmpo 5935* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  (
 z  =  C  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. z  e. 
 ran  F ph  <->  A. x  e.  A  A. y  e.  B  ps ) )
 
Theoremrexrnmpo 5936* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  (
 z  =  C  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( E. z  e. 
 ran  F ph  <->  E. x  e.  A  E. y  e.  B  ps ) )
 
Theoremovid 5937* The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  R  /\  y  e.  S )  /\  ph ) }   =>    |-  ( ( x  e.  R  /\  y  e.  S )  ->  (
 ( x F y )  =  z  <->  ph ) )
 
Theoremovidig 5938* The value of an operation class abstraction. Compare ovidi 5939. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |- 
 E* z ph   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  ph }   =>    |-  ( ph  ->  ( x F y )  =  z )
 
Theoremovidi 5939* The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( ( x  e.  R  /\  y  e.  S )  ->  E* z ph )   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  R  /\  y  e.  S )  /\  ph ) }   =>    |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( ph  ->  ( x F y )  =  z ) )
 
Theoremov 5940* The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  C  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  R  /\  y  e.  S )  ->  E! z ph )   &    |-  F  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  R  /\  y  e.  S )  /\  ph ) }   =>    |-  ( ( A  e.  R  /\  B  e.  S )  ->  (
 ( A F B )  =  C  <->  th ) )
 
Theoremovigg 5941* The value of an operation class abstraction. Compare ovig 5942. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   &    |-  E* z ph   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  ph }   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps 
 ->  ( A F B )  =  C )
 )
 
Theoremovig 5942* The value of an operation class abstraction (weak version). (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 14-Sep-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   &    |-  (
 ( x  e.  R  /\  y  e.  S )  ->  E* z ph )   &    |-  F  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }   =>    |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( ps 
 ->  ( A F B )  =  C )
 )
 
Theoremovmpt4g 5943* Value of a function given by the maps-to notation. (This is the operation analog of fvmpt2 5551.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  ->  ( x F y )  =  C )
 
Theoremovmpos 5944* Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )   =>    |-  ( ( A  e.  C  /\  B  e.  D  /\  [_ A  /  x ]_ [_ B  /  y ]_ R  e.  V )  ->  ( A F B )  = 
 [_ A  /  x ]_
 [_ B  /  y ]_ R )
 
Theoremov2gf 5945* The value of an operation class abstraction. A version of ovmpog 5955 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |-  F/_ x G   &    |-  F/_ y S   &    |-  ( x  =  A  ->  R  =  G )   &    |-  (
 y  =  B  ->  G  =  S )   &    |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )   =>    |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H ) 
 ->  ( A F B )  =  S )
 
Theoremovmpodxf 5946* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )   &    |-  (
 ( ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )   &    |-  (
 ( ph  /\  x  =  A )  ->  D  =  L )   &    |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  L )   &    |-  ( ph  ->  S  e.  X )   &    |-  F/ x ph   &    |-  F/ y ph   &    |-  F/_ y A   &    |-  F/_ x B   &    |-  F/_ x S   &    |-  F/_ y S   =>    |-  ( ph  ->  ( A F B )  =  S )
 
Theoremovmpodx 5947* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )   &    |-  (
 ( ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )   &    |-  (
 ( ph  /\  x  =  A )  ->  D  =  L )   &    |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  L )   &    |-  ( ph  ->  S  e.  X )   =>    |-  ( ph  ->  ( A F B )  =  S )
 
Theoremovmpod 5948* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )   &    |-  (
 ( ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )   &    |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  S  e.  X )   =>    |-  ( ph  ->  ( A F B )  =  S )
 
Theoremovmpox 5949* The value of an operation class abstraction. Variant of ovmpoga 5950 which does not require  D and  x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )   &    |-  ( x  =  A  ->  D  =  L )   &    |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )   =>    |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  H ) 
 ->  ( A F B )  =  S )
 
Theoremovmpoga 5950* Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )   &    |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )   =>    |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H ) 
 ->  ( A F B )  =  S )
 
Theoremovmpoa 5951* Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )   &    |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )   &    |-  S  e.  _V   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
 
Theoremovmpodf 5952* Alternate deduction version of ovmpo 5956, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  D )   &    |-  ( ( ph  /\  ( x  =  A  /\  y  =  B )
 )  ->  R  e.  V )   &    |-  ( ( ph  /\  ( x  =  A  /\  y  =  B ) )  ->  ( ( A F B )  =  R  ->  ps )
 )   &    |-  F/_ x F   &    |-  F/ x ps   &    |-  F/_ y F   &    |- 
 F/ y ps   =>    |-  ( ph  ->  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  ->  ps ) )
 
Theoremovmpodv 5953* Alternate deduction version of ovmpo 5956, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  D )   &    |-  ( ( ph  /\  ( x  =  A  /\  y  =  B )
 )  ->  R  e.  V )   &    |-  ( ( ph  /\  ( x  =  A  /\  y  =  B ) )  ->  ( ( A F B )  =  R  ->  ps )
 )   =>    |-  ( ph  ->  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  ->  ps ) )
 
Theoremovmpodv2 5954* Alternate deduction version of ovmpo 5956, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  D )   &    |-  ( ( ph  /\  ( x  =  A  /\  y  =  B )
 )  ->  R  e.  V )   &    |-  ( ( ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )   =>    |-  ( ph  ->  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  ->  ( A F B )  =  S ) )
 
Theoremovmpog 5955* Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( x  =  A  ->  R  =  G )   &    |-  ( y  =  B  ->  G  =  S )   &    |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )   =>    |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
 
Theoremovmpo 5956* Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( x  =  A  ->  R  =  G )   &    |-  ( y  =  B  ->  G  =  S )   &    |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )   &    |-  S  e.  _V   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
 
Theoremovi3 5957* The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 29-Dec-2014.)
 |-  ( ( ( A  e.  H  /\  B  e.  H )  /\  ( C  e.  H  /\  D  e.  H )
 )  ->  S  e.  ( H  X.  H ) )   &    |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  R  =  S )   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. ) 
 /\  z  =  R ) ) }   =>    |-  ( ( ( A  e.  H  /\  B  e.  H )  /\  ( C  e.  H  /\  D  e.  H ) )  ->  ( <. A ,  B >. F <. C ,  D >. )  =  S )
 
Theoremov6g 5958* The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
 |-  ( <. x ,  y >.  =  <. A ,  B >.  ->  R  =  S )   &    |-  F  =  { <. <. x ,  y >. ,  z >.  |  ( <. x ,  y >.  e.  C  /\  z  =  R ) }   =>    |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( A F B )  =  S )
 
Theoremovg 5959* The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( ta  /\  ( x  e.  R  /\  y  e.  S )
 )  ->  E! z ph )   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  R  /\  y  e.  S )  /\  ph ) }   =>    |-  ( ( ta 
 /\  ( A  e.  R  /\  B  e.  S  /\  C  e.  D ) )  ->  ( ( A F B )  =  C  <->  th ) )
 
Theoremovres 5960 The value of a restricted operation. (Contributed by FL, 10-Nov-2006.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A ( F  |`  ( C  X.  D ) ) B )  =  ( A F B ) )
 
Theoremovresd 5961 Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( A ( D  |`  ( X  X.  X ) ) B )  =  ( A D B ) )
 
Theoremoprssov 5962 The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
 |-  ( ( ( Fun 
 F  /\  G  Fn  ( C  X.  D ) 
 /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D ) )  ->  ( A F B )  =  ( A G B ) )
 
Theoremfovrn 5963 An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
 |-  ( ( F :
 ( R  X.  S )
 --> C  /\  A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )
 
Theoremfovrnda 5964 An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : ( R  X.  S ) --> C )   =>    |-  ( ( ph  /\  ( A  e.  R  /\  B  e.  S )
 )  ->  ( A F B )  e.  C )
 
Theoremfovrnd 5965 An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : ( R  X.  S ) --> C )   &    |-  ( ph  ->  A  e.  R )   &    |-  ( ph  ->  B  e.  S )   =>    |-  ( ph  ->  ( A F B )  e.  C )
 
Theoremfnrnov 5966* The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006.)
 |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }
 )
 
Theoremfoov 5967* An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
 |-  ( F : ( A  X.  B )
 -onto-> C  <->  ( F :
 ( A  X.  B )
 --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
 
Theoremfnovrn 5968 An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
 |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  A  /\  D  e.  B ) 
 ->  ( C F D )  e.  ran  F )
 
Theoremovelrn 5969* A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
 |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
 
Theoremfunimassov 5970* Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013.)
 |-  ( ( Fun  F  /\  ( A  X.  B )  C_  dom  F )  ->  ( ( F "
 ( A  X.  B ) )  C_  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
 
Theoremovelimab 5971* Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
 |-  ( ( F  Fn  A  /\  ( B  X.  C )  C_  A ) 
 ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) ) )
 
Theoremovconst2 5972 The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
 |-  C  e.  _V   =>    |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R ( ( A  X.  B )  X.  { C } ) S )  =  C )
 
Theoremcaovclg 5973* Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
 |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x F y )  e.  E )   =>    |-  ( ( ph  /\  ( A  e.  C  /\  B  e.  D )
 )  ->  ( A F B )  e.  E )
 
Theoremcaovcld 5974* Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x F y )  e.  E )   &    |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   =>    |-  ( ph  ->  ( A F B )  e.  E )
 
Theoremcaovcl 5975* Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
 |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A F B )  e.  S )
 
Theoremcaovcomg 5976* Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S )
 )  ->  ( A F B )  =  ( B F A ) )
 
Theoremcaovcomd 5977* Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   =>    |-  ( ph  ->  ( A F B )  =  ( B F A ) )
 
Theoremcaovcom 5978* Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x F y )  =  ( y F x )   =>    |-  ( A F B )  =  ( B F A )
 
Theoremcaovassg 5979* Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro, 26-May-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
 
Theoremcaovassd 5980* Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  (
 ( A F B ) F C )  =  ( A F ( B F C ) ) )
 
Theoremcaovass 5981* Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  (
 ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
 
Theoremcaovcang 5982* Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y )  =  ( x F z )  <->  y  =  z
 ) )   =>    |-  ( ( ph  /\  ( A  e.  T  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( ( A F B )  =  ( A F C ) 
 <->  B  =  C ) )
 
Theoremcaovcand 5983* Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y )  =  ( x F z )  <->  y  =  z
 ) )   &    |-  ( ph  ->  A  e.  T )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  (
 ( A F B )  =  ( A F C )  <->  B  =  C ) )
 
Theoremcaovcanrd 5984* Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y )  =  ( x F z )  <->  y  =  z
 ) )   &    |-  ( ph  ->  A  e.  T )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ph  ->  A  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  =  ( y F x ) )   =>    |-  ( ph  ->  ( ( B F A )  =  ( C F A )  <->  B  =  C ) )
 
Theoremcaovcan 5985* Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.)
 |-  C  e.  _V   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( ( x F y )  =  ( x F z )  ->  y  =  z ) )   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  (
 ( A F B )  =  ( A F C )  ->  B  =  C ) )
 
Theoremcaovordig 5986* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  ->  ( z F x ) R ( z F y ) ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( A R B  ->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovordid 5987* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  ->  ( z F x ) R ( z F y ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( A R B  ->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovordg 5988* Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovordd 5989* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovord2d 5990* Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  =  ( y F x ) )   =>    |-  ( ph  ->  ( A R B  <->  ( A F C ) R ( B F C ) ) )
 
Theoremcaovord3d 5991* Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ph  ->  D  e.  S )   =>    |-  ( ph  ->  ( ( A F B )  =  ( C F D )  ->  ( A R C  <->  D R B ) ) )
 
Theoremcaovord 5992* Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   =>    |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovord2 5993* Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   =>    |-  ( C  e.  S  ->  ( A R B  <->  ( A F C ) R ( B F C ) ) )
 
Theoremcaovord3 5994* Ordering law. (Contributed by NM, 29-Feb-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  D  e.  _V   =>    |-  (
 ( ( B  e.  S  /\  C  e.  S )  /\  ( A F B )  =  ( C F D ) ) 
 ->  ( A R C  <->  D R B ) )
 
Theoremcaovdig 5995* Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
 |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )   =>    |-  ( ( ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
 
Theoremcaovdid 5996* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
 
Theoremcaovdir2d 5997* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x G y )  =  ( y G x ) )   =>    |-  ( ph  ->  (
 ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) ) )
 
Theoremcaovdirg 5998* Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K )
 )  ->  ( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  K )
 )  ->  ( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
 
Theoremcaovdird 5999* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K )
 )  ->  ( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  K )   =>    |-  ( ph  ->  (
 ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
 
Theoremcaovdi 6000* Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )   =>    |-  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13652
  Copyright terms: Public domain < Previous  Next >