HomeHome Intuitionistic Logic Explorer
Theorem List (p. 60 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5901-6000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremf1ocnvfv2 5901 The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )
 
Theoremf1ocnvfv 5902 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `
  C )  =  D  ->  ( `' F `  D )  =  C ) )
 
Theoremf1ocnvfvb 5903 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  A  /\  D  e.  B ) 
 ->  ( ( F `  C )  =  D  <->  ( `' F `  D )  =  C ) )
 
Theoremf1ocnvdm 5904 The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  e.  A )
 
Theoremf1ocnvfvrneq 5905 If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
 |-  ( ( F : A -1-1-> B  /\  ( C  e.  ran  F  /\  D  e.  ran  F ) )  ->  ( ( `' F `  C )  =  ( `' F `  D )  ->  C  =  D ) )
 
Theoremfcof1 5906 An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( F : A
 --> B  /\  ( R  o.  F )  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
 
Theoremfcofo 5907 An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( F : A
 --> B  /\  S : B
 --> A  /\  ( F  o.  S )  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
 
Theoremcbvfo 5908* Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( F `  x )  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( F : A -onto-> B  ->  ( A. x  e.  A  ph  <->  A. y  e.  B  ps ) )
 
Theoremcbvexfo 5909* Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
 |-  ( ( F `  x )  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( F : A -onto-> B  ->  ( E. x  e.  A  ph  <->  E. y  e.  B  ps ) )
 
Theoremcocan1 5910 An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( F : B -1-1-> C  /\  H : A
 --> B  /\  K : A
 --> B )  ->  (
 ( F  o.  H )  =  ( F  o.  K )  <->  H  =  K ) )
 
Theoremcocan2 5911 A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( F : A -onto-> B  /\  H  Fn  B  /\  K  Fn  B )  ->  ( ( H  o.  F )  =  ( K  o.  F ) 
 <->  H  =  K ) )
 
Theoremfcof1o 5912 Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( ( F : A --> B  /\  G : B --> A ) 
 /\  ( ( F  o.  G )  =  (  _I  |`  B ) 
 /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )
 
Theoremfoeqcnvco 5913 Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
 |-  ( ( F : A -onto-> B  /\  G : A -onto-> B )  ->  ( F  =  G  <->  ( F  o.  `' G )  =  (  _I  |`  B )
 ) )
 
Theoremf1eqcocnv 5914 Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
 |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  ->  ( F  =  G  <->  ( `' F  o.  G )  =  (  _I  |`  A )
 ) )
 
Theoremfliftrel 5915*  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  F  C_  ( R  X.  S ) )
 
Theoremfliftel 5916* Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B ) ) )
 
Theoremfliftel1 5917* Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ( ph  /\  x  e.  X )  ->  A F B )
 
Theoremfliftcnv 5918* Converse of the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  `' F  =  ran  ( x  e.  X  |->  <. B ,  A >. ) )
 
Theoremfliftfun 5919* The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   &    |-  ( x  =  y  ->  A  =  C )   &    |-  ( x  =  y  ->  B  =  D )   =>    |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( A  =  C  ->  B  =  D ) ) )
 
Theoremfliftfund 5920* The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   &    |-  ( x  =  y  ->  A  =  C )   &    |-  ( x  =  y  ->  B  =  D )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  A  =  C ) )  ->  B  =  D )   =>    |-  ( ph  ->  Fun  F )
 
Theoremfliftfuns 5921* The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  (
 [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  =  [_ z  /  x ]_ B ) ) )
 
Theoremfliftf 5922* The domain and range of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   =>    |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  A ) --> S ) )
 
Theoremfliftval 5923* The value of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  R )   &    |-  ( ( ph  /\  x  e.  X )  ->  B  e.  S )   &    |-  ( x  =  Y  ->  A  =  C )   &    |-  ( x  =  Y  ->  B  =  D )   &    |-  ( ph  ->  Fun 
 F )   =>    |-  ( ( ph  /\  Y  e.  X )  ->  ( F `  C )  =  D )
 
Theoremisoeq1 5924 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( H  =  G  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  G  Isom  R ,  S  ( A ,  B ) ) )
 
Theoremisoeq2 5925 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( R  =  T  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  T ,  S  ( A ,  B ) ) )
 
Theoremisoeq3 5926 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  R ,  T  ( A ,  B ) ) )
 
Theoremisoeq4 5927 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  R ,  S  ( C ,  B ) ) )
 
Theoremisoeq5 5928 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
 |-  ( B  =  C  ->  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  R ,  S  ( A ,  C ) ) )
 
Theoremnfiso 5929 Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  F/_ x H   &    |-  F/_ x R   &    |-  F/_ x S   &    |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  H  Isom  R ,  S  ( A ,  B )
 
Theoremisof1o 5930 An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B )
 
Theoremisorel 5931 An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  e.  A  /\  D  e.  A ) )  ->  ( C R D  <->  ( H `  C ) S ( H `  D ) ) )
 
Theoremisoresbr 5932* A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.)
 |-  ( ( F  |`  A ) 
 Isom  R ,  S  ( A ,  ( F
 " A ) ) 
 ->  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( F `  x ) S ( F `  y ) ) )
 
Theoremisoid 5933 Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
 |-  (  _I  |`  A ) 
 Isom  R ,  R  ( A ,  A )
 
Theoremisocnv 5934 Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
 
Theoremisocnv2 5935 Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  `' R ,  `' S ( A ,  B ) )
 
Theoremisores2 5936 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  R ,  ( S  i^i  ( B  X.  B ) ) ( A ,  B ) )
 
Theoremisores1 5937 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) )
 
Theoremisores3 5938 Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  K  C_  A  /\  X  =  ( H " K ) )  ->  ( H  |`  K )  Isom  R ,  S  ( K ,  X ) )
 
Theoremisotr 5939 Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )
 
Theoremiso0 5940 The empty set is an  R ,  S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.)
 |-  (/)  Isom  R ,  S  ( (/) ,  (/) )
 
Theoremisoini 5941 Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
 |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  D  e.  A )  ->  ( H " ( A  i^i  ( `' R " { D } )
 ) )  =  ( B  i^i  ( `' S " { ( H `  D ) }
 ) ) )
 
Theoremisoini2 5942 Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
 |-  C  =  ( A  i^i  ( `' R " { X } )
 )   &    |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } )
 )   =>    |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) 
 Isom  R ,  S  ( C ,  D ) )
 
Theoremisoselem 5943* Lemma for isose 5944. (Contributed by Mario Carneiro, 23-Jun-2015.)
 |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  ( H " x )  e.  _V )   =>    |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
 
Theoremisose 5944 An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  <->  S Se 
 B ) )
 
Theoremisopolem 5945 Lemma for isopo 5946. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( S  Po  B  ->  R  Po  A ) )
 
Theoremisopo 5946 An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R  Po  A 
 <->  S  Po  B ) )
 
Theoremisosolem 5947 Lemma for isoso 5948. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A ) )
 
Theoremisoso 5948 An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
 <->  S  Or  B ) )
 
Theoremf1oiso 5949* Any one-to-one onto function determines an isomorphism with an induced relation  S. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
 |-  ( ( H : A
 -1-1-onto-> B  /\  S  =  { <. z ,  w >.  | 
 E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  H  Isom  R ,  S  ( A ,  B ) )
 
Theoremf1oiso2 5950* Any one-to-one onto function determines an isomorphism with an induced relation  S. (Contributed by Mario Carneiro, 9-Mar-2013.)
 |-  S  =  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) }   =>    |-  ( H : A -1-1-onto-> B  ->  H  Isom  R ,  S  ( A ,  B ) )
 
2.6.9  Cantor's Theorem
 
Theoremcanth 5951 No set  A is equinumerous to its power set (Cantor's theorem), i.e., no function can map  A onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1546 if you want the form  -.  E. f
f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
 |-  A  e.  _V   =>    |-  -.  F : A -onto-> ~P A
 
2.6.10  Restricted iota (description binder)
 
Syntaxcrio 5952 Extend class notation with restricted description binder.
 class  ( iota_ x  e.  A  ph )
 
Definitiondf-riota 5953 Define restricted description binder. In case there is no unique  x such that  ( x  e.  A  /\  ph ) holds, it evaluates to the empty set. See also comments for df-iota 5277. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
 |-  ( iota_ x  e.  A  ph )  =  ( iota
 x ( x  e.  A  /\  ph )
 )
 
Theoremriotaeqdv 5954* Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  B  ps ) )
 
Theoremriotabidv 5955* Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
 
Theoremriotaeqbidv 5956* Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 iota_ x  e.  A  ps )  =  ( iota_ x  e.  B  ch ) )
 
Theoremriotaexg 5957* Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( A  e.  V  ->  ( iota_ x  e.  A  ps )  e.  _V )
 
Theoremiotaexel 5958* Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.)
 |-  ( ( A  e.  V  /\  A. x (
 ph  ->  x  e.  A ) )  ->  ( iota
 x ph )  e.  _V )
 
Theoremriotav 5959 An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
 |-  ( iota_ x  e.  _V  ph )  =  ( iota
 x ph )
 
Theoremriotauni 5960 Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  =  U. { x  e.  A  |  ph } )
 
Theoremnfriota1 5961* The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x ( iota_ x  e.  A  ph )
 
Theoremnfriotadxy 5962* Deduction version of nfriota 5963. (Contributed by Jim Kingdon, 12-Jan-2019.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/_ x (
 iota_ y  e.  A  ps ) )
 
Theoremnfriota 5963* A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
 |- 
 F/ x ph   &    |-  F/_ x A   =>    |-  F/_ x ( iota_ y  e.  A  ph )
 
Theoremcbvriotavw 5964* Change bound variable in a restricted description binder. Version of cbvriotav 5966 with a disjoint variable condition. (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
 
Theoremcbvriota 5965* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
 
Theoremcbvriotav 5966* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
 
Theoremcsbriotag 5967* Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph )
 )
 
Theoremriotacl2 5968 Membership law for "the unique element in  A such that  ph."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph } )
 
Theoremriotacl 5969* Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
 
Theoremriotasbc 5970 Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
 
Theoremriotabidva 5971* Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2787 analog.) (Contributed by NM, 17-Jan-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
 
Theoremriotabiia 5972 Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2784 analog.) (Contributed by NM, 16-Jan-2012.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )
 
Theoremriota1 5973* Property of restricted iota. Compare iota1 5292. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota_ x  e.  A  ph )  =  x ) )
 
Theoremriota1a 5974 Property of iota. (Contributed by NM, 23-Aug-2011.)
 |-  ( ( x  e.  A  /\  E! x  e.  A  ph )  ->  ( ph  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
 
Theoremriota2df 5975* A deduction version of riota2f 5976. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/_ x B )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ( ph  /\  x  =  B ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ( ph  /\ 
 E! x  e.  A  ps )  ->  ( ch  <->  (
 iota_ x  e.  A  ps )  =  B ) )
 
Theoremriota2f 5976* This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x B   &    |-  F/ x ps   &    |-  ( x  =  B  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  ( iota_ x  e.  A  ph )  =  B ) )
 
Theoremriota2 5977* This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  ( iota_ x  e.  A  ph )  =  B ) )
 
Theoremriotaeqimp 5978* If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.)
 |-  I  =  ( iota_ a  e.  V  X  =  A )   &    |-  J  =  (
 iota_ a  e.  V  Y  =  A )   &    |-  ( ph  ->  E! a  e.  V  X  =  A )   &    |-  ( ph  ->  E! a  e.  V  Y  =  A )   =>    |-  ( ( ph  /\  I  =  J )  ->  X  =  Y )
 
Theoremriotaprop 5979* Properties of a restricted definite description operator. Todo (df-riota 5953 update): can some uses of riota2f 5976 be shortened with this? (Contributed by NM, 23-Nov-2013.)
 |- 
 F/ x ps   &    |-  B  =  ( iota_ x  e.  A  ph )   &    |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  ->  ( B  e.  A  /\  ps ) )
 
Theoremriota5f 5980* A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  F/_ x B )   &    |-  ( ph  ->  B  e.  A )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( ps 
 <->  x  =  B ) )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B )
 
Theoremriota5 5981* A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
 |-  ( ph  ->  B  e.  A )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  x  =  B ) )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B )
 
Theoremriotass2 5982* Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
 |-  ( ( ( A 
 C_  B  /\  A. x  e.  A  ( ph  ->  ps ) )  /\  ( E. x  e.  A  ph 
 /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ps ) )
 
Theoremriotass 5983* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph )
 )
 
Theoremmoriotass 5984* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph )
 )
 
Theoremsnriota 5985 A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
 |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  { ( iota_ x  e.  A  ph ) }
 )
 
Theoremeusvobj2 5986* Specify the same property in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B  <->  A. y  e.  A  x  =  B )
 )
 
Theoremeusvobj1 5987* Specify the same object in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  B  e.  _V   =>    |-  ( E! x E. y  e.  A  x  =  B  ->  (
 iota x E. y  e.  A  x  =  B )  =  ( iota x
 A. y  e.  A  x  =  B )
 )
 
Theoremf1ofveu 5988* There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
 
Theoremf1ocnvfv3 5989* Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
 iota_ x  e.  A  ( F `  x )  =  C ) )
 
Theoremriotaund 5990* Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
 |-  ( -.  E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  =  (/) )
 
Theoremacexmidlema 5991* Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( { (/) }  e.  A  -> 
 ph )
 
Theoremacexmidlemb 5992* Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( (/) 
 e.  B  ->  ph )
 
Theoremacexmidlemph 5993* Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( ph  ->  A  =  B )
 
Theoremacexmidlemab 5994* Lemma for acexmid 5999. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  (
 ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_
 v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
 )  =  { (/) } )  ->  -.  ph )
 
Theoremacexmidlemcase 5995* Lemma for acexmid 5999. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at  A equals  { (/) }, (2) the choice function evaluated at  B equals  (/), and (3) the choice function evaluated at  A equals 
(/) and the choice function evaluated at  B equals  { (/) }.

Because of the way we represent the choice function  y, the choice function evaluated at  A is  ( iota_ v  e.  A E. u  e.  y ( A  e.  u  /\  v  e.  u ) ) and the choice function evaluated at  B is  ( iota_ v  e.  B E. u  e.  y ( B  e.  u  /\  v  e.  u ) ). Other than the difference in notation these work just as  ( y `  A ) and  ( y `  B ) would if  y were a function as defined by df-fun 5319.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at  A equals  { (/) }, then  { (/) }  e.  A and likewise for  B.

(Contributed by Jim Kingdon, 7-Aug-2019.)

 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_
 v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
 )  =  { (/) } )
 ) )
 
Theoremacexmidlem1 5996* Lemma for acexmid 5999. List the cases identified in acexmidlemcase 5995 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
 
Theoremacexmidlem2 5997* Lemma for acexmid 5999. This builds on acexmidlem1 5996 by noting that every element of  C is inhabited.

(Note that  y is not quite a function in the df-fun 5319 sense because it uses ordered pairs as described in opthreg 4647 rather than df-op 3675).

The set  A is also found in onsucelsucexmidlem 4620.

(Contributed by Jim Kingdon, 5-Aug-2019.)

 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
 z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
 
Theoremacexmidlemv 5998* Lemma for acexmid 5999.

This is acexmid 5999 with additional disjoint variable conditions, most notably between  ph and  x.

(Contributed by Jim Kingdon, 6-Aug-2019.)

 |- 
 E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )   =>    |-  ( ph  \/  -.  ph )
 
Theoremacexmid 5999* The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function  y provides a value when  z is inhabited (as opposed to nonempty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

For this theorem stated using the df-ac 7384 and df-exmid 4278 syntaxes, see exmidac 7387. (Contributed by Jim Kingdon, 4-Aug-2019.)

 |- 
 E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )   =>    |-  ( ph  \/  -.  ph )
 
2.6.11  Operations
 
Syntaxco 6000 Extend class notation to include the value of an operation  F (such as + ) for two arguments  A and  B. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous.
 class  ( A F B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >