ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmdvds Unicode version

Theorem lcmdvds 10986
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
)

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 19 . . . . . . 7  |-  ( 0 
||  K  ->  0  ||  K )
2 breq1 3825 . . . . . . . . 9  |-  ( M  =  0  ->  ( M  ||  K  <->  0  ||  K ) )
32adantl 271 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M  ||  K 
<->  0  ||  K ) )
4 oveq1 5622 . . . . . . . . . 10  |-  ( M  =  0  ->  ( M lcm  N )  =  ( 0 lcm  N ) )
5 0z 8697 . . . . . . . . . . . 12  |-  0  e.  ZZ
6 lcmcom 10971 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 lcm  N )  =  ( N lcm  0
) )
75, 6mpan 415 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  ( N lcm  0 ) )
8 lcm0val 10972 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
97, 8eqtrd 2117 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
104, 9sylan9eqr 2139 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  N
)  =  0 )
1110breq1d 3832 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( ( M lcm 
N )  ||  K  <->  0 
||  K ) )
123, 11imbi12d 232 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( ( M 
||  K  ->  ( M lcm  N )  ||  K
)  <->  ( 0  ||  K  ->  0  ||  K
) ) )
131, 12mpbiri 166 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M  ||  K  ->  ( M lcm  N
)  ||  K )
)
14133ad2antl3 1105 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  ||  K  ->  ( M lcm  N )  ||  K ) )
1514adantrd 273 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
1615ex 113 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
) )
17 breq1 3825 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  ||  K  <->  0  ||  K ) )
1817adantl 271 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( N  ||  K 
<->  0  ||  K ) )
19 oveq2 5623 . . . . . . . . . 10  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
20 lcm0val 10972 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
2119, 20sylan9eqr 2139 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( M lcm  N
)  =  0 )
2221breq1d 3832 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( ( M lcm 
N )  ||  K  <->  0 
||  K ) )
2318, 22imbi12d 232 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( ( N 
||  K  ->  ( M lcm  N )  ||  K
)  <->  ( 0  ||  K  ->  0  ||  K
) ) )
241, 23mpbiri 166 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( N  ||  K  ->  ( M lcm  N
)  ||  K )
)
25243ad2antl2 1104 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( N  ||  K  ->  ( M lcm  N )  ||  K ) )
2625adantld 272 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
2726ex 113 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
) )
2816, 27jaod 670 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
29 neanior 2338 . . . . . 6  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
30 lcmcl 10979 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
3130nn0zd 8802 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  ZZ )
32 dvds0 10736 . . . . . . . . . . . . . . . . 17  |-  ( ( M lcm  N )  e.  ZZ  ->  ( M lcm  N )  ||  0 )
3331, 32syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N ) 
||  0 )
3433a1d 22 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  0  /\  N  ||  0
)  ->  ( M lcm  N )  ||  0 ) )
3534adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( ( M  ||  0  /\  N  ||  0 )  ->  ( M lcm  N )  ||  0
) )
36 breq2 3826 . . . . . . . . . . . . . . . . 17  |-  ( K  =  0  ->  ( M  ||  K  <->  M  ||  0
) )
37 breq2 3826 . . . . . . . . . . . . . . . . 17  |-  ( K  =  0  ->  ( N  ||  K  <->  N  ||  0
) )
3836, 37anbi12d 457 . . . . . . . . . . . . . . . 16  |-  ( K  =  0  ->  (
( M  ||  K  /\  N  ||  K )  <-> 
( M  ||  0  /\  N  ||  0 ) ) )
39 breq2 3826 . . . . . . . . . . . . . . . 16  |-  ( K  =  0  ->  (
( M lcm  N ) 
||  K  <->  ( M lcm  N )  ||  0 ) )
4038, 39imbi12d 232 . . . . . . . . . . . . . . 15  |-  ( K  =  0  ->  (
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K )  <-> 
( ( M  ||  0  /\  N  ||  0
)  ->  ( M lcm  N )  ||  0 ) ) )
4140adantl 271 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )  <->  ( ( M  ||  0  /\  N  ||  0 )  ->  ( M lcm  N
)  ||  0 ) ) )
4235, 41mpbird 165 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4342adantrl 462 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) )
4443adantllr 465 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4544adantlrr 467 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4645anassrs 392 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  /\  K  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
47 nnabscl 10450 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
48 nnabscl 10450 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
49 nnabscl 10450 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( abs `  K
)  e.  NN )
50 lcmgcdlem 10984 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  /\  ( ( ( abs `  K )  e.  NN  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) ) )
5150simprd 112 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( abs `  K )  e.  NN  /\  ( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5249, 51sylani 398 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( K  e.  ZZ  /\  K  =/=  0 )  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5347, 48, 52syl2an 283 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( K  e.  ZZ  /\  K  =/=  0 )  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5453expdimp 255 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) ) )
55 dvdsabsb 10740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  K  <->  M 
||  ( abs `  K
) ) )
56 zabscl 10436 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ZZ  ->  ( abs `  K )  e.  ZZ )
57 absdvdsb 10739 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  ( abs `  K )  e.  ZZ )  -> 
( M  ||  ( abs `  K )  <->  ( abs `  M )  ||  ( abs `  K ) ) )
5856, 57sylan2 280 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  ( abs `  K )  <->  ( abs `  M )  ||  ( abs `  K ) ) )
5955, 58bitrd 186 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  K  <->  ( abs `  M ) 
||  ( abs `  K
) ) )
6059adantlr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( M  ||  K 
<->  ( abs `  M
)  ||  ( abs `  K ) ) )
61 dvdsabsb 10740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  N 
||  ( abs `  K
) ) )
62 absdvdsb 10739 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ZZ  /\  ( abs `  K )  e.  ZZ )  -> 
( N  ||  ( abs `  K )  <->  ( abs `  N )  ||  ( abs `  K ) ) )
6356, 62sylan2 280 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  ( abs `  K )  <->  ( abs `  N )  ||  ( abs `  K ) ) )
6461, 63bitrd 186 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  ( abs `  N ) 
||  ( abs `  K
) ) )
6564adantll 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( N  ||  K 
<->  ( abs `  N
)  ||  ( abs `  K ) ) )
6660, 65anbi12d 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( M 
||  K  /\  N  ||  K )  <->  ( ( abs `  M )  ||  ( abs `  K )  /\  ( abs `  N
)  ||  ( abs `  K ) ) ) )
6766bicomd 139 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  <-> 
( M  ||  K  /\  N  ||  K ) ) )
68 lcmabs 10983 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
6968breq1d 3832 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K )  <-> 
( M lcm  N ) 
||  ( abs `  K
) ) )
7069adantr 270 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  ||  ( abs `  K )  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
71 dvdsabsb 10740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M lcm  N )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M lcm  N ) 
||  K  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
7231, 71sylan 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( M lcm 
N )  ||  K  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
7370, 72bitr4d 189 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  ||  ( abs `  K )  <->  ( M lcm  N )  ||  K ) )
7467, 73imbi12d 232 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) )  <->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7574adantrr 463 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K ) )  <->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7675adantllr 465 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K ) )  <->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7776adantlrr 467 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) )  <->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7854, 77mpbid 145 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
7978anassrs 392 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  /\  K  =/=  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
80 zdceq 8758 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  -> DECID  K  =  0 )
815, 80mpan2 416 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  -> DECID  K  =  0
)
82 exmiddc 780 . . . . . . . . . . . 12  |-  (DECID  K  =  0  ->  ( K  =  0  \/  -.  K  =  0 ) )
8381, 82syl 14 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  =  0  \/  -.  K  =  0
) )
84 df-ne 2252 . . . . . . . . . . . 12  |-  ( K  =/=  0  <->  -.  K  =  0 )
8584orbi2i 712 . . . . . . . . . . 11  |-  ( ( K  =  0  \/  K  =/=  0 )  <-> 
( K  =  0  \/  -.  K  =  0 ) )
8683, 85sylibr 132 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  =  0  \/  K  =/=  0 ) )
8786adantl 271 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  ->  ( K  =  0  \/  K  =/=  0
) )
8846, 79, 87mpjaodan 745 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) )
8988ex 113 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) ) )
9089an4s 553 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  -> 
( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) ) )
9129, 90sylan2br 282 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
9291impancom 256 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
93923impa 1136 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
94933comr 1149 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
95 lcmmndc 10969 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
96 exmiddc 780 . . . 4  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
9795, 96syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
98973adant1 959 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
9928, 94, 98mpjaod 671 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662  DECID wdc 778    /\ w3a 922    = wceq 1287    e. wcel 1436    =/= wne 2251   class class class wbr 3822   ` cfv 4983  (class class class)co 5615   0cc0 7297    x. cmul 7302   NNcn 8360   ZZcz 8686   abscabs 10347    || cdvds 10721    gcd cgcd 10863   lcm clcm 10967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410  ax-arch 7411  ax-caucvg 7412
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-isom 4992  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-frec 6112  df-sup 6626  df-inf 6627  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-2 8419  df-3 8420  df-4 8421  df-n0 8610  df-z 8687  df-uz 8955  df-q 9040  df-rp 9070  df-fz 9360  df-fzo 9485  df-fl 9608  df-mod 9661  df-iseq 9784  df-iexp 9875  df-cj 10193  df-re 10194  df-im 10195  df-rsqrt 10348  df-abs 10349  df-dvds 10722  df-gcd 10864  df-lcm 10968
This theorem is referenced by:  lcmdvdsb  10991
  Copyright terms: Public domain W3C validator