ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmdvds Unicode version

Theorem lcmdvds 12247
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
)

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 19 . . . . . . 7  |-  ( 0 
||  K  ->  0  ||  K )
2 breq1 4036 . . . . . . . . 9  |-  ( M  =  0  ->  ( M  ||  K  <->  0  ||  K ) )
32adantl 277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M  ||  K 
<->  0  ||  K ) )
4 oveq1 5929 . . . . . . . . . 10  |-  ( M  =  0  ->  ( M lcm  N )  =  ( 0 lcm  N ) )
5 0z 9337 . . . . . . . . . . . 12  |-  0  e.  ZZ
6 lcmcom 12232 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 lcm  N )  =  ( N lcm  0
) )
75, 6mpan 424 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  ( N lcm  0 ) )
8 lcm0val 12233 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
97, 8eqtrd 2229 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
104, 9sylan9eqr 2251 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  N
)  =  0 )
1110breq1d 4043 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( ( M lcm 
N )  ||  K  <->  0 
||  K ) )
123, 11imbi12d 234 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( ( M 
||  K  ->  ( M lcm  N )  ||  K
)  <->  ( 0  ||  K  ->  0  ||  K
) ) )
131, 12mpbiri 168 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M  ||  K  ->  ( M lcm  N
)  ||  K )
)
14133ad2antl3 1163 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  ||  K  ->  ( M lcm  N )  ||  K ) )
1514adantrd 279 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
1615ex 115 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
) )
17 breq1 4036 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  ||  K  <->  0  ||  K ) )
1817adantl 277 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( N  ||  K 
<->  0  ||  K ) )
19 oveq2 5930 . . . . . . . . . 10  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
20 lcm0val 12233 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
2119, 20sylan9eqr 2251 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( M lcm  N
)  =  0 )
2221breq1d 4043 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( ( M lcm 
N )  ||  K  <->  0 
||  K ) )
2318, 22imbi12d 234 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( ( N 
||  K  ->  ( M lcm  N )  ||  K
)  <->  ( 0  ||  K  ->  0  ||  K
) ) )
241, 23mpbiri 168 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( N  ||  K  ->  ( M lcm  N
)  ||  K )
)
25243ad2antl2 1162 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( N  ||  K  ->  ( M lcm  N )  ||  K ) )
2625adantld 278 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
2726ex 115 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
) )
2816, 27jaod 718 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
29 neanior 2454 . . . . . 6  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
30 lcmcl 12240 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
3130nn0zd 9446 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  ZZ )
32 dvds0 11971 . . . . . . . . . . . . . . . . 17  |-  ( ( M lcm  N )  e.  ZZ  ->  ( M lcm  N )  ||  0 )
3331, 32syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N ) 
||  0 )
3433a1d 22 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  0  /\  N  ||  0
)  ->  ( M lcm  N )  ||  0 ) )
3534adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( ( M  ||  0  /\  N  ||  0 )  ->  ( M lcm  N )  ||  0
) )
36 breq2 4037 . . . . . . . . . . . . . . . . 17  |-  ( K  =  0  ->  ( M  ||  K  <->  M  ||  0
) )
37 breq2 4037 . . . . . . . . . . . . . . . . 17  |-  ( K  =  0  ->  ( N  ||  K  <->  N  ||  0
) )
3836, 37anbi12d 473 . . . . . . . . . . . . . . . 16  |-  ( K  =  0  ->  (
( M  ||  K  /\  N  ||  K )  <-> 
( M  ||  0  /\  N  ||  0 ) ) )
39 breq2 4037 . . . . . . . . . . . . . . . 16  |-  ( K  =  0  ->  (
( M lcm  N ) 
||  K  <->  ( M lcm  N )  ||  0 ) )
4038, 39imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( K  =  0  ->  (
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K )  <-> 
( ( M  ||  0  /\  N  ||  0
)  ->  ( M lcm  N )  ||  0 ) ) )
4140adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )  <->  ( ( M  ||  0  /\  N  ||  0 )  ->  ( M lcm  N
)  ||  0 ) ) )
4235, 41mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4342adantrl 478 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) )
4443adantllr 481 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4544adantlrr 483 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4645anassrs 400 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  /\  K  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
47 nnabscl 11265 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
48 nnabscl 11265 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
49 nnabscl 11265 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( abs `  K
)  e.  NN )
50 lcmgcdlem 12245 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  /\  ( ( ( abs `  K )  e.  NN  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) ) )
5150simprd 114 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( abs `  K )  e.  NN  /\  ( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5249, 51sylani 406 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( K  e.  ZZ  /\  K  =/=  0 )  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5347, 48, 52syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( K  e.  ZZ  /\  K  =/=  0 )  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5453expdimp 259 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) ) )
55 dvdsabsb 11975 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  K  <->  M 
||  ( abs `  K
) ) )
56 zabscl 11251 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ZZ  ->  ( abs `  K )  e.  ZZ )
57 absdvdsb 11974 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  ( abs `  K )  e.  ZZ )  -> 
( M  ||  ( abs `  K )  <->  ( abs `  M )  ||  ( abs `  K ) ) )
5856, 57sylan2 286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  ( abs `  K )  <->  ( abs `  M )  ||  ( abs `  K ) ) )
5955, 58bitrd 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  K  <->  ( abs `  M ) 
||  ( abs `  K
) ) )
6059adantlr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( M  ||  K 
<->  ( abs `  M
)  ||  ( abs `  K ) ) )
61 dvdsabsb 11975 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  N 
||  ( abs `  K
) ) )
62 absdvdsb 11974 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ZZ  /\  ( abs `  K )  e.  ZZ )  -> 
( N  ||  ( abs `  K )  <->  ( abs `  N )  ||  ( abs `  K ) ) )
6356, 62sylan2 286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  ( abs `  K )  <->  ( abs `  N )  ||  ( abs `  K ) ) )
6461, 63bitrd 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  ( abs `  N ) 
||  ( abs `  K
) ) )
6564adantll 476 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( N  ||  K 
<->  ( abs `  N
)  ||  ( abs `  K ) ) )
6660, 65anbi12d 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( M 
||  K  /\  N  ||  K )  <->  ( ( abs `  M )  ||  ( abs `  K )  /\  ( abs `  N
)  ||  ( abs `  K ) ) ) )
6766bicomd 141 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  <-> 
( M  ||  K  /\  N  ||  K ) ) )
68 lcmabs 12244 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
6968breq1d 4043 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K )  <-> 
( M lcm  N ) 
||  ( abs `  K
) ) )
7069adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  ||  ( abs `  K )  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
71 dvdsabsb 11975 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M lcm  N )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M lcm  N ) 
||  K  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
7231, 71sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( M lcm 
N )  ||  K  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
7370, 72bitr4d 191 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  ||  ( abs `  K )  <->  ( M lcm  N )  ||  K ) )
7467, 73imbi12d 234 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) )  <->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7574adantrr 479 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K ) )  <->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7675adantllr 481 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K ) )  <->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7776adantlrr 483 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) )  <->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7854, 77mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
7978anassrs 400 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  /\  K  =/=  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
80 zdceq 9401 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  -> DECID  K  =  0 )
815, 80mpan2 425 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  -> DECID  K  =  0
)
82 exmiddc 837 . . . . . . . . . . . 12  |-  (DECID  K  =  0  ->  ( K  =  0  \/  -.  K  =  0 ) )
8381, 82syl 14 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  =  0  \/  -.  K  =  0
) )
84 df-ne 2368 . . . . . . . . . . . 12  |-  ( K  =/=  0  <->  -.  K  =  0 )
8584orbi2i 763 . . . . . . . . . . 11  |-  ( ( K  =  0  \/  K  =/=  0 )  <-> 
( K  =  0  \/  -.  K  =  0 ) )
8683, 85sylibr 134 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  =  0  \/  K  =/=  0 ) )
8786adantl 277 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  ->  ( K  =  0  \/  K  =/=  0
) )
8846, 79, 87mpjaodan 799 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) )
8988ex 115 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) ) )
9089an4s 588 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  -> 
( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) ) )
9129, 90sylan2br 288 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
9291impancom 260 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
93923impa 1196 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
94933comr 1213 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
95 lcmmndc 12230 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
96 exmiddc 837 . . . 4  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
9795, 96syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
98973adant1 1017 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
9928, 94, 98mpjaod 719 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   0cc0 7879    x. cmul 7884   NNcn 8990   ZZcz 9326   abscabs 11162    || cdvds 11952    gcd cgcd 12120   lcm clcm 12228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-lcm 12229
This theorem is referenced by:  lcmdvdsb  12252
  Copyright terms: Public domain W3C validator