ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmdvds Unicode version

Theorem lcmdvds 12587
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
)

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 19 . . . . . . 7  |-  ( 0 
||  K  ->  0  ||  K )
2 breq1 4085 . . . . . . . . 9  |-  ( M  =  0  ->  ( M  ||  K  <->  0  ||  K ) )
32adantl 277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M  ||  K 
<->  0  ||  K ) )
4 oveq1 6001 . . . . . . . . . 10  |-  ( M  =  0  ->  ( M lcm  N )  =  ( 0 lcm  N ) )
5 0z 9445 . . . . . . . . . . . 12  |-  0  e.  ZZ
6 lcmcom 12572 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 lcm  N )  =  ( N lcm  0
) )
75, 6mpan 424 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  ( N lcm  0 ) )
8 lcm0val 12573 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
97, 8eqtrd 2262 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
104, 9sylan9eqr 2284 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  N
)  =  0 )
1110breq1d 4092 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( ( M lcm 
N )  ||  K  <->  0 
||  K ) )
123, 11imbi12d 234 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( ( M 
||  K  ->  ( M lcm  N )  ||  K
)  <->  ( 0  ||  K  ->  0  ||  K
) ) )
131, 12mpbiri 168 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M  ||  K  ->  ( M lcm  N
)  ||  K )
)
14133ad2antl3 1185 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  ||  K  ->  ( M lcm  N )  ||  K ) )
1514adantrd 279 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
1615ex 115 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
) )
17 breq1 4085 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  ||  K  <->  0  ||  K ) )
1817adantl 277 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( N  ||  K 
<->  0  ||  K ) )
19 oveq2 6002 . . . . . . . . . 10  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
20 lcm0val 12573 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
2119, 20sylan9eqr 2284 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( M lcm  N
)  =  0 )
2221breq1d 4092 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( ( M lcm 
N )  ||  K  <->  0 
||  K ) )
2318, 22imbi12d 234 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( ( N 
||  K  ->  ( M lcm  N )  ||  K
)  <->  ( 0  ||  K  ->  0  ||  K
) ) )
241, 23mpbiri 168 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( N  ||  K  ->  ( M lcm  N
)  ||  K )
)
25243ad2antl2 1184 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( N  ||  K  ->  ( M lcm  N )  ||  K ) )
2625adantld 278 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
2726ex 115 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
) )
2816, 27jaod 722 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
29 neanior 2487 . . . . . 6  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
30 lcmcl 12580 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
3130nn0zd 9555 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  ZZ )
32 dvds0 12303 . . . . . . . . . . . . . . . . 17  |-  ( ( M lcm  N )  e.  ZZ  ->  ( M lcm  N )  ||  0 )
3331, 32syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N ) 
||  0 )
3433a1d 22 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  0  /\  N  ||  0
)  ->  ( M lcm  N )  ||  0 ) )
3534adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( ( M  ||  0  /\  N  ||  0 )  ->  ( M lcm  N )  ||  0
) )
36 breq2 4086 . . . . . . . . . . . . . . . . 17  |-  ( K  =  0  ->  ( M  ||  K  <->  M  ||  0
) )
37 breq2 4086 . . . . . . . . . . . . . . . . 17  |-  ( K  =  0  ->  ( N  ||  K  <->  N  ||  0
) )
3836, 37anbi12d 473 . . . . . . . . . . . . . . . 16  |-  ( K  =  0  ->  (
( M  ||  K  /\  N  ||  K )  <-> 
( M  ||  0  /\  N  ||  0 ) ) )
39 breq2 4086 . . . . . . . . . . . . . . . 16  |-  ( K  =  0  ->  (
( M lcm  N ) 
||  K  <->  ( M lcm  N )  ||  0 ) )
4038, 39imbi12d 234 . . . . . . . . . . . . . . 15  |-  ( K  =  0  ->  (
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K )  <-> 
( ( M  ||  0  /\  N  ||  0
)  ->  ( M lcm  N )  ||  0 ) ) )
4140adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )  <->  ( ( M  ||  0  /\  N  ||  0 )  ->  ( M lcm  N
)  ||  0 ) ) )
4235, 41mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4342adantrl 478 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) )
4443adantllr 481 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4544adantlrr 483 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4645anassrs 400 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  /\  K  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
47 nnabscl 11597 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
48 nnabscl 11597 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
49 nnabscl 11597 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( abs `  K
)  e.  NN )
50 lcmgcdlem 12585 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  /\  ( ( ( abs `  K )  e.  NN  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) ) )
5150simprd 114 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( abs `  K )  e.  NN  /\  ( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5249, 51sylani 406 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( K  e.  ZZ  /\  K  =/=  0 )  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5347, 48, 52syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( K  e.  ZZ  /\  K  =/=  0 )  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5453expdimp 259 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) ) )
55 dvdsabsb 12307 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  K  <->  M 
||  ( abs `  K
) ) )
56 zabscl 11583 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ZZ  ->  ( abs `  K )  e.  ZZ )
57 absdvdsb 12306 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  ( abs `  K )  e.  ZZ )  -> 
( M  ||  ( abs `  K )  <->  ( abs `  M )  ||  ( abs `  K ) ) )
5856, 57sylan2 286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  ( abs `  K )  <->  ( abs `  M )  ||  ( abs `  K ) ) )
5955, 58bitrd 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  K  <->  ( abs `  M ) 
||  ( abs `  K
) ) )
6059adantlr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( M  ||  K 
<->  ( abs `  M
)  ||  ( abs `  K ) ) )
61 dvdsabsb 12307 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  N 
||  ( abs `  K
) ) )
62 absdvdsb 12306 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ZZ  /\  ( abs `  K )  e.  ZZ )  -> 
( N  ||  ( abs `  K )  <->  ( abs `  N )  ||  ( abs `  K ) ) )
6356, 62sylan2 286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  ( abs `  K )  <->  ( abs `  N )  ||  ( abs `  K ) ) )
6461, 63bitrd 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  ( abs `  N ) 
||  ( abs `  K
) ) )
6564adantll 476 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( N  ||  K 
<->  ( abs `  N
)  ||  ( abs `  K ) ) )
6660, 65anbi12d 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( M 
||  K  /\  N  ||  K )  <->  ( ( abs `  M )  ||  ( abs `  K )  /\  ( abs `  N
)  ||  ( abs `  K ) ) ) )
6766bicomd 141 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  <-> 
( M  ||  K  /\  N  ||  K ) ) )
68 lcmabs 12584 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
6968breq1d 4092 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K )  <-> 
( M lcm  N ) 
||  ( abs `  K
) ) )
7069adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  ||  ( abs `  K )  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
71 dvdsabsb 12307 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M lcm  N )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M lcm  N ) 
||  K  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
7231, 71sylan 283 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( M lcm 
N )  ||  K  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
7370, 72bitr4d 191 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  ||  ( abs `  K )  <->  ( M lcm  N )  ||  K ) )
7467, 73imbi12d 234 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) )  <->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7574adantrr 479 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K ) )  <->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7675adantllr 481 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K ) )  <->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7776adantlrr 483 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) )  <->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7854, 77mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
7978anassrs 400 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  /\  K  =/=  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
80 zdceq 9510 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  -> DECID  K  =  0 )
815, 80mpan2 425 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  -> DECID  K  =  0
)
82 exmiddc 841 . . . . . . . . . . . 12  |-  (DECID  K  =  0  ->  ( K  =  0  \/  -.  K  =  0 ) )
8381, 82syl 14 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  =  0  \/  -.  K  =  0
) )
84 df-ne 2401 . . . . . . . . . . . 12  |-  ( K  =/=  0  <->  -.  K  =  0 )
8584orbi2i 767 . . . . . . . . . . 11  |-  ( ( K  =  0  \/  K  =/=  0 )  <-> 
( K  =  0  \/  -.  K  =  0 ) )
8683, 85sylibr 134 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  =  0  \/  K  =/=  0 ) )
8786adantl 277 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  ->  ( K  =  0  \/  K  =/=  0
) )
8846, 79, 87mpjaodan 803 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) )
8988ex 115 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) ) )
9089an4s 590 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  -> 
( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) ) )
9129, 90sylan2br 288 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
9291impancom 260 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
93923impa 1218 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
94933comr 1235 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
95 lcmmndc 12570 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
96 exmiddc 841 . . . 4  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
9795, 96syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
98973adant1 1039 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
9928, 94, 98mpjaod 723 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   0cc0 7987    x. cmul 7992   NNcn 9098   ZZcz 9434   abscabs 11494    || cdvds 12284    gcd cgcd 12460   lcm clcm 12568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461  df-lcm 12569
This theorem is referenced by:  lcmdvdsb  12592
  Copyright terms: Public domain W3C validator