ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelop Unicode version

Theorem 0nelop 4334
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelop  |-  -.  (/)  e.  <. A ,  B >.

Proof of Theorem 0nelop
StepHypRef Expression
1 id 19 . . . 4  |-  ( (/)  e.  <. A ,  B >.  ->  (/)  e.  <. A ,  B >. )
2 oprcl 3881 . . . . 5  |-  ( (/)  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )
3 dfopg 3855 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
42, 3syl 14 . . . 4  |-  ( (/)  e.  <. A ,  B >.  ->  <. A ,  B >.  =  { { A } ,  { A ,  B } } )
51, 4eleqtrd 2308 . . 3  |-  ( (/)  e.  <. A ,  B >.  ->  (/)  e.  { { A } ,  { A ,  B } } )
6 elpri 3689 . . 3  |-  ( (/)  e.  { { A } ,  { A ,  B } }  ->  ( (/)  =  { A }  \/  (/)  =  { A ,  B } ) )
75, 6syl 14 . 2  |-  ( (/)  e.  <. A ,  B >.  ->  ( (/)  =  { A }  \/  (/)  =  { A ,  B }
) )
82simpld 112 . . . . . 6  |-  ( (/)  e.  <. A ,  B >.  ->  A  e.  _V )
9 snnzg 3784 . . . . . 6  |-  ( A  e.  _V  ->  { A }  =/=  (/) )
108, 9syl 14 . . . . 5  |-  ( (/)  e.  <. A ,  B >.  ->  { A }  =/=  (/) )
1110necomd 2486 . . . 4  |-  ( (/)  e.  <. A ,  B >.  ->  (/)  =/=  { A } )
12 prnzg 3792 . . . . . 6  |-  ( A  e.  _V  ->  { A ,  B }  =/=  (/) )
138, 12syl 14 . . . . 5  |-  ( (/)  e.  <. A ,  B >.  ->  { A ,  B }  =/=  (/) )
1413necomd 2486 . . . 4  |-  ( (/)  e.  <. A ,  B >.  ->  (/)  =/=  { A ,  B } )
1511, 14jca 306 . . 3  |-  ( (/)  e.  <. A ,  B >.  ->  ( (/)  =/=  { A }  /\  (/)  =/=  { A ,  B }
) )
16 neanior 2487 . . 3  |-  ( (
(/)  =/=  { A }  /\  (/)  =/=  { A ,  B } )  <->  -.  ( (/)  =  { A }  \/  (/)  =  { A ,  B } ) )
1715, 16sylib 122 . 2  |-  ( (/)  e.  <. A ,  B >.  ->  -.  ( (/)  =  { A }  \/  (/)  =  { A ,  B }
) )
187, 17pm2.65i 642 1  |-  -.  (/)  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799   (/)c0 3491   {csn 3666   {cpr 3667   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  opwo0id  4335  0nelelxp  4748
  Copyright terms: Public domain W3C validator