ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelop Unicode version

Theorem 0nelop 4310
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
0nelop  |-  -.  (/)  e.  <. A ,  B >.

Proof of Theorem 0nelop
StepHypRef Expression
1 id 19 . . . 4  |-  ( (/)  e.  <. A ,  B >.  ->  (/)  e.  <. A ,  B >. )
2 oprcl 3857 . . . . 5  |-  ( (/)  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )
3 dfopg 3831 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
42, 3syl 14 . . . 4  |-  ( (/)  e.  <. A ,  B >.  ->  <. A ,  B >.  =  { { A } ,  { A ,  B } } )
51, 4eleqtrd 2286 . . 3  |-  ( (/)  e.  <. A ,  B >.  ->  (/)  e.  { { A } ,  { A ,  B } } )
6 elpri 3666 . . 3  |-  ( (/)  e.  { { A } ,  { A ,  B } }  ->  ( (/)  =  { A }  \/  (/)  =  { A ,  B } ) )
75, 6syl 14 . 2  |-  ( (/)  e.  <. A ,  B >.  ->  ( (/)  =  { A }  \/  (/)  =  { A ,  B }
) )
82simpld 112 . . . . . 6  |-  ( (/)  e.  <. A ,  B >.  ->  A  e.  _V )
9 snnzg 3760 . . . . . 6  |-  ( A  e.  _V  ->  { A }  =/=  (/) )
108, 9syl 14 . . . . 5  |-  ( (/)  e.  <. A ,  B >.  ->  { A }  =/=  (/) )
1110necomd 2464 . . . 4  |-  ( (/)  e.  <. A ,  B >.  ->  (/)  =/=  { A } )
12 prnzg 3768 . . . . . 6  |-  ( A  e.  _V  ->  { A ,  B }  =/=  (/) )
138, 12syl 14 . . . . 5  |-  ( (/)  e.  <. A ,  B >.  ->  { A ,  B }  =/=  (/) )
1413necomd 2464 . . . 4  |-  ( (/)  e.  <. A ,  B >.  ->  (/)  =/=  { A ,  B } )
1511, 14jca 306 . . 3  |-  ( (/)  e.  <. A ,  B >.  ->  ( (/)  =/=  { A }  /\  (/)  =/=  { A ,  B }
) )
16 neanior 2465 . . 3  |-  ( (
(/)  =/=  { A }  /\  (/)  =/=  { A ,  B } )  <->  -.  ( (/)  =  { A }  \/  (/)  =  { A ,  B } ) )
1715, 16sylib 122 . 2  |-  ( (/)  e.  <. A ,  B >.  ->  -.  ( (/)  =  { A }  \/  (/)  =  { A ,  B }
) )
187, 17pm2.65i 640 1  |-  -.  (/)  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178    =/= wne 2378   _Vcvv 2776   (/)c0 3468   {csn 3643   {cpr 3644   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  opwo0id  4311  0nelelxp  4722
  Copyright terms: Public domain W3C validator