ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirnn0 Unicode version

Theorem lgsdirnn0 15163
Description: Variation on lgsdir 15151 valid for all  A ,  B but only for positive  N. (The exact location of the failure of this law is for  A  =  0,  B  <  0,  N  =  -u 1 in which case  ( 0  /L -u 1
)  =  1 but  ( B  /L -u 1 )  = 
-u 1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdirnn0  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )

Proof of Theorem lgsdirnn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5925 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  /L N )  =  ( B  /L N ) )
21oveq1d 5933 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( B  /L
N )  x.  (
0  /L N ) ) )
32eqeq2d 2205 . . . . . . 7  |-  ( x  =  B  ->  (
( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) )  <->  ( 0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) ) )
4 id 19 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
5 nn0z 9337 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 lgscl 15130 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  /L
N )  e.  ZZ )
74, 5, 6syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L
N )  e.  ZZ )
87zcnd 9440 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L
N )  e.  CC )
98adantr 276 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
x  /L N )  e.  CC )
109mul01d 8412 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
( x  /L
N )  x.  0 )  =  0 )
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
0  /L N )  =  0 )
1211oveq2d 5934 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( x  /L
N )  x.  0 ) )
1310, 12, 113eqtr4rd 2237 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L N ) ) )
14 0z 9328 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
155adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  N  e.  ZZ )
16 lgsne0 15154 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  <->  ( 0  gcd 
N )  =  1 ) )
1714, 15, 16sylancr 414 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  <->  ( 0  gcd 
N )  =  1 ) )
18 gcdcom 12110 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  N
)  =  ( N  gcd  0 ) )
1914, 15, 18sylancr 414 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  gcd  N
)  =  ( N  gcd  0 ) )
20 nn0gcdid0 12118 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( N  gcd  0 )  =  N )
2120adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( N  gcd  0
)  =  N )
2219, 21eqtrd 2226 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  gcd  N
)  =  N )
2322eqeq1d 2202 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  gcd 
N )  =  1  <-> 
N  =  1 ) )
24 lgs1 15160 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
x  /L 1 )  =  1 )
2524adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L 1 )  =  1 )
26 oveq2 5926 . . . . . . . . . . . . . . . . 17  |-  ( N  =  1  ->  (
x  /L N )  =  ( x  /L 1 ) )
2726eqeq1d 2202 . . . . . . . . . . . . . . . 16  |-  ( N  =  1  ->  (
( x  /L
N )  =  1  <-> 
( x  /L 1 )  =  1 ) )
2825, 27syl5ibrcom 157 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( N  =  1  ->  ( x  /L N )  =  1 ) )
2923, 28sylbid 150 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  gcd 
N )  =  1  ->  ( x  /L N )  =  1 ) )
3017, 29sylbid 150 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  ->  ( x  /L N )  =  1 ) )
3130imp 124 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
x  /L N )  =  1 )
3231oveq1d 5933 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( 1  x.  ( 0  /L N ) ) )
335ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  N  e.  ZZ )
34 lgscl 15130 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  /L
N )  e.  ZZ )
3514, 33, 34sylancr 414 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  e.  ZZ )
3635zcnd 9440 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  e.  CC )
3736mulid2d 8038 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
1  x.  ( 0  /L N ) )  =  ( 0  /L N ) )
3832, 37eqtr2d 2227 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L N ) ) )
3914, 15, 34sylancr 414 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  /L
N )  e.  ZZ )
40 zdceq 9392 . . . . . . . . . . . 12  |-  ( ( ( 0  /L
N )  e.  ZZ  /\  0  e.  ZZ )  -> DECID 
( 0  /L
N )  =  0 )
4139, 14, 40sylancl 413 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  -> DECID  ( 0  /L N )  =  0 )
42 dcne 2375 . . . . . . . . . . 11  |-  (DECID  ( 0  /L N )  =  0  <->  ( (
0  /L N )  =  0  \/  ( 0  /L
N )  =/=  0
) )
4341, 42sylib 122 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =  0  \/  ( 0  /L N )  =/=  0 ) )
4413, 38, 43mpjaodan 799 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) ) )
4544ralrimiva 2567 . . . . . . . 8  |-  ( N  e.  NN0  ->  A. x  e.  ZZ  ( 0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L
N ) ) )
46453ad2ant3 1022 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A. x  e.  ZZ  ( 0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L
N ) ) )
47 simp2 1000 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  B  e.  ZZ )
483, 46, 47rspcdva 2869 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) )
4948adantr 276 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L
N ) ) )
5053ad2ant3 1022 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  N  e.  ZZ )
5114, 50, 34sylancr 414 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  e.  ZZ )
5251zcnd 9440 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  e.  CC )
5352adantr 276 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  e.  CC )
54 lgscl 15130 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B  /L
N )  e.  ZZ )
5547, 50, 54syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( B  /L N )  e.  ZZ )
5655zcnd 9440 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( B  /L N )  e.  CC )
5756adantr 276 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( B  /L N )  e.  CC )
5853, 57mulcomd 8041 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( 0  /L N )  x.  ( B  /L N ) )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) )
5949, 58eqtr4d 2229 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  =  ( ( 0  /L N )  x.  ( B  /L
N ) ) )
60 oveq1 5925 . . . . . 6  |-  ( A  =  0  ->  ( A  x.  B )  =  ( 0  x.  B ) )
61 zcn 9322 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
62613ad2ant2 1021 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  B  e.  CC )
6362mul02d 8411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  x.  B )  =  0 )
6460, 63sylan9eqr 2248 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( A  x.  B )  =  0 )
6564oveq1d 5933 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( 0  /L
N ) )
66 simpr 110 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  A  =  0 )
6766oveq1d 5933 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( A  /L N )  =  ( 0  /L
N ) )
6867oveq1d 5933 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( ( 0  /L N )  x.  ( B  /L N ) ) )
6959, 65, 683eqtr4d 2236 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
70 oveq1 5925 . . . . . . . 8  |-  ( x  =  A  ->  (
x  /L N )  =  ( A  /L N ) )
7170oveq1d 5933 . . . . . . 7  |-  ( x  =  A  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( A  /L
N )  x.  (
0  /L N ) ) )
7271eqeq2d 2205 . . . . . 6  |-  ( x  =  A  ->  (
( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) )  <->  ( 0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) ) )
73 simp1 999 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  ZZ )
7472, 46, 73rspcdva 2869 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) )
7574adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( 0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L
N ) ) )
76 oveq2 5926 . . . . . 6  |-  ( B  =  0  ->  ( A  x.  B )  =  ( A  x.  0 ) )
7773zcnd 9440 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  CC )
7877mul01d 8412 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( A  x.  0 )  =  0 )
7976, 78sylan9eqr 2248 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( A  x.  B )  =  0 )
8079oveq1d 5933 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( 0  /L
N ) )
81 simpr 110 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  B  =  0 )
8281oveq1d 5933 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( B  /L N )  =  ( 0  /L
N ) )
8382oveq2d 5934 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) )
8475, 80, 833eqtr4d 2236 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
8569, 84jaodan 798 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  ( A  =  0  \/  B  =  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
86 neanior 2451 . . 3  |-  ( ( A  =/=  0  /\  B  =/=  0 )  <->  -.  ( A  =  0  \/  B  =  0 ) )
87 lgsdir 15151 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
885, 87syl3anl3 1299 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
8986, 88sylan2br 288 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  -.  ( A  =  0  \/  B  =  0 ) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
90 zdceq 9392 . . . . 5  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  =  0 )
9173, 14, 90sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  A  =  0
)
92 zdceq 9392 . . . . 5  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
9347, 14, 92sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  B  =  0
)
94 dcor 937 . . . 4  |-  (DECID  A  =  0  ->  (DECID  B  = 
0  -> DECID  ( A  =  0  \/  B  =  0 ) ) )
9591, 93, 94sylc 62 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  ( A  =  0  \/  B  =  0 ) )
96 exmiddc 837 . . 3  |-  (DECID  ( A  =  0  \/  B  =  0 )  -> 
( ( A  =  0  \/  B  =  0 )  \/  -.  ( A  =  0  \/  B  =  0
) ) )
9795, 96syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  =  0  \/  B  =  0 )  \/  -.  ( A  =  0  \/  B  =  0 ) ) )
9885, 89, 97mpjaodan 799 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    x. cmul 7877   NN0cn0 9240   ZZcz 9317    gcd cgcd 12079    /Lclgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator