ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirnn0 Unicode version

Theorem lgsdirnn0 15442
Description: Variation on lgsdir 15430 valid for all  A ,  B but only for positive  N. (The exact location of the failure of this law is for  A  =  0,  B  <  0,  N  =  -u 1 in which case  ( 0  /L -u 1
)  =  1 but  ( B  /L -u 1 )  = 
-u 1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdirnn0  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )

Proof of Theorem lgsdirnn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5941 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  /L N )  =  ( B  /L N ) )
21oveq1d 5949 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( B  /L
N )  x.  (
0  /L N ) ) )
32eqeq2d 2216 . . . . . . 7  |-  ( x  =  B  ->  (
( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) )  <->  ( 0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) ) )
4 id 19 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
5 nn0z 9374 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 lgscl 15409 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  /L
N )  e.  ZZ )
74, 5, 6syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L
N )  e.  ZZ )
87zcnd 9478 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L
N )  e.  CC )
98adantr 276 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
x  /L N )  e.  CC )
109mul01d 8447 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
( x  /L
N )  x.  0 )  =  0 )
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
0  /L N )  =  0 )
1211oveq2d 5950 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( x  /L
N )  x.  0 ) )
1310, 12, 113eqtr4rd 2248 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L N ) ) )
14 0z 9365 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
155adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  N  e.  ZZ )
16 lgsne0 15433 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  <->  ( 0  gcd 
N )  =  1 ) )
1714, 15, 16sylancr 414 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  <->  ( 0  gcd 
N )  =  1 ) )
18 gcdcom 12213 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  N
)  =  ( N  gcd  0 ) )
1914, 15, 18sylancr 414 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  gcd  N
)  =  ( N  gcd  0 ) )
20 nn0gcdid0 12221 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( N  gcd  0 )  =  N )
2120adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( N  gcd  0
)  =  N )
2219, 21eqtrd 2237 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  gcd  N
)  =  N )
2322eqeq1d 2213 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  gcd 
N )  =  1  <-> 
N  =  1 ) )
24 lgs1 15439 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
x  /L 1 )  =  1 )
2524adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L 1 )  =  1 )
26 oveq2 5942 . . . . . . . . . . . . . . . . 17  |-  ( N  =  1  ->  (
x  /L N )  =  ( x  /L 1 ) )
2726eqeq1d 2213 . . . . . . . . . . . . . . . 16  |-  ( N  =  1  ->  (
( x  /L
N )  =  1  <-> 
( x  /L 1 )  =  1 ) )
2825, 27syl5ibrcom 157 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( N  =  1  ->  ( x  /L N )  =  1 ) )
2923, 28sylbid 150 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  gcd 
N )  =  1  ->  ( x  /L N )  =  1 ) )
3017, 29sylbid 150 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  ->  ( x  /L N )  =  1 ) )
3130imp 124 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
x  /L N )  =  1 )
3231oveq1d 5949 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( 1  x.  ( 0  /L N ) ) )
335ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  N  e.  ZZ )
34 lgscl 15409 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  /L
N )  e.  ZZ )
3514, 33, 34sylancr 414 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  e.  ZZ )
3635zcnd 9478 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  e.  CC )
3736mulid2d 8073 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
1  x.  ( 0  /L N ) )  =  ( 0  /L N ) )
3832, 37eqtr2d 2238 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L N ) ) )
3914, 15, 34sylancr 414 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  /L
N )  e.  ZZ )
40 zdceq 9430 . . . . . . . . . . . 12  |-  ( ( ( 0  /L
N )  e.  ZZ  /\  0  e.  ZZ )  -> DECID 
( 0  /L
N )  =  0 )
4139, 14, 40sylancl 413 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  -> DECID  ( 0  /L N )  =  0 )
42 dcne 2386 . . . . . . . . . . 11  |-  (DECID  ( 0  /L N )  =  0  <->  ( (
0  /L N )  =  0  \/  ( 0  /L
N )  =/=  0
) )
4341, 42sylib 122 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =  0  \/  ( 0  /L N )  =/=  0 ) )
4413, 38, 43mpjaodan 799 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) ) )
4544ralrimiva 2578 . . . . . . . 8  |-  ( N  e.  NN0  ->  A. x  e.  ZZ  ( 0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L
N ) ) )
46453ad2ant3 1022 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A. x  e.  ZZ  ( 0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L
N ) ) )
47 simp2 1000 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  B  e.  ZZ )
483, 46, 47rspcdva 2881 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) )
4948adantr 276 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L
N ) ) )
5053ad2ant3 1022 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  N  e.  ZZ )
5114, 50, 34sylancr 414 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  e.  ZZ )
5251zcnd 9478 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  e.  CC )
5352adantr 276 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  e.  CC )
54 lgscl 15409 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B  /L
N )  e.  ZZ )
5547, 50, 54syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( B  /L N )  e.  ZZ )
5655zcnd 9478 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( B  /L N )  e.  CC )
5756adantr 276 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( B  /L N )  e.  CC )
5853, 57mulcomd 8076 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( 0  /L N )  x.  ( B  /L N ) )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) )
5949, 58eqtr4d 2240 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  =  ( ( 0  /L N )  x.  ( B  /L
N ) ) )
60 oveq1 5941 . . . . . 6  |-  ( A  =  0  ->  ( A  x.  B )  =  ( 0  x.  B ) )
61 zcn 9359 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
62613ad2ant2 1021 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  B  e.  CC )
6362mul02d 8446 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  x.  B )  =  0 )
6460, 63sylan9eqr 2259 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( A  x.  B )  =  0 )
6564oveq1d 5949 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( 0  /L
N ) )
66 simpr 110 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  A  =  0 )
6766oveq1d 5949 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( A  /L N )  =  ( 0  /L
N ) )
6867oveq1d 5949 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( ( 0  /L N )  x.  ( B  /L N ) ) )
6959, 65, 683eqtr4d 2247 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
70 oveq1 5941 . . . . . . . 8  |-  ( x  =  A  ->  (
x  /L N )  =  ( A  /L N ) )
7170oveq1d 5949 . . . . . . 7  |-  ( x  =  A  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( A  /L
N )  x.  (
0  /L N ) ) )
7271eqeq2d 2216 . . . . . 6  |-  ( x  =  A  ->  (
( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) )  <->  ( 0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) ) )
73 simp1 999 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  ZZ )
7472, 46, 73rspcdva 2881 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) )
7574adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( 0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L
N ) ) )
76 oveq2 5942 . . . . . 6  |-  ( B  =  0  ->  ( A  x.  B )  =  ( A  x.  0 ) )
7773zcnd 9478 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  CC )
7877mul01d 8447 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( A  x.  0 )  =  0 )
7976, 78sylan9eqr 2259 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( A  x.  B )  =  0 )
8079oveq1d 5949 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( 0  /L
N ) )
81 simpr 110 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  B  =  0 )
8281oveq1d 5949 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( B  /L N )  =  ( 0  /L
N ) )
8382oveq2d 5950 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) )
8475, 80, 833eqtr4d 2247 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
8569, 84jaodan 798 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  ( A  =  0  \/  B  =  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
86 neanior 2462 . . 3  |-  ( ( A  =/=  0  /\  B  =/=  0 )  <->  -.  ( A  =  0  \/  B  =  0 ) )
87 lgsdir 15430 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
885, 87syl3anl3 1299 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
8986, 88sylan2br 288 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  -.  ( A  =  0  \/  B  =  0 ) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
90 zdceq 9430 . . . . 5  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  =  0 )
9173, 14, 90sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  A  =  0
)
92 zdceq 9430 . . . . 5  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
9347, 14, 92sylancl 413 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  B  =  0
)
94 dcor 937 . . . 4  |-  (DECID  A  =  0  ->  (DECID  B  = 
0  -> DECID  ( A  =  0  \/  B  =  0 ) ) )
9591, 93, 94sylc 62 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  ( A  =  0  \/  B  =  0 ) )
96 exmiddc 837 . . 3  |-  (DECID  ( A  =  0  \/  B  =  0 )  -> 
( ( A  =  0  \/  B  =  0 )  \/  -.  ( A  =  0  \/  B  =  0
) ) )
9795, 96syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  =  0  \/  B  =  0 )  \/  -.  ( A  =  0  \/  B  =  0 ) ) )
9885, 89, 97mpjaodan 799 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375   A.wral 2483  (class class class)co 5934   CCcc 7905   0cc0 7907   1c1 7908    x. cmul 7912   NN0cn0 9277   ZZcz 9354    gcd cgcd 12193    /Lclgs 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-2o 6493  df-oadd 6496  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-9 9084  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665  df-ihash 10902  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-proddc 11781  df-dvds 12018  df-gcd 12194  df-prm 12349  df-phi 12452  df-pc 12527  df-lgs 15393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator