ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirnn0 Unicode version

Theorem lgsdirnn0 13742
Description: Variation on lgsdir 13730 valid for all  A ,  B but only for positive  N. (The exact location of the failure of this law is for  A  =  0,  B  <  0,  N  =  -u 1 in which case  ( 0  /L -u 1
)  =  1 but  ( B  /L -u 1 )  = 
-u 1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdirnn0  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )

Proof of Theorem lgsdirnn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5860 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  /L N )  =  ( B  /L N ) )
21oveq1d 5868 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( B  /L
N )  x.  (
0  /L N ) ) )
32eqeq2d 2182 . . . . . . 7  |-  ( x  =  B  ->  (
( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) )  <->  ( 0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) ) )
4 id 19 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
5 nn0z 9232 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 lgscl 13709 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  /L
N )  e.  ZZ )
74, 5, 6syl2anr 288 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L
N )  e.  ZZ )
87zcnd 9335 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L
N )  e.  CC )
98adantr 274 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
x  /L N )  e.  CC )
109mul01d 8312 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
( x  /L
N )  x.  0 )  =  0 )
11 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
0  /L N )  =  0 )
1211oveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( x  /L
N )  x.  0 ) )
1310, 12, 113eqtr4rd 2214 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =  0 )  ->  (
0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L N ) ) )
14 0z 9223 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
155adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  N  e.  ZZ )
16 lgsne0 13733 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  <->  ( 0  gcd 
N )  =  1 ) )
1714, 15, 16sylancr 412 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  <->  ( 0  gcd 
N )  =  1 ) )
18 gcdcom 11928 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  N
)  =  ( N  gcd  0 ) )
1914, 15, 18sylancr 412 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  gcd  N
)  =  ( N  gcd  0 ) )
20 nn0gcdid0 11936 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( N  gcd  0 )  =  N )
2120adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( N  gcd  0
)  =  N )
2219, 21eqtrd 2203 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  gcd  N
)  =  N )
2322eqeq1d 2179 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  gcd 
N )  =  1  <-> 
N  =  1 ) )
24 lgs1 13739 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
x  /L 1 )  =  1 )
2524adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( x  /L 1 )  =  1 )
26 oveq2 5861 . . . . . . . . . . . . . . . . 17  |-  ( N  =  1  ->  (
x  /L N )  =  ( x  /L 1 ) )
2726eqeq1d 2179 . . . . . . . . . . . . . . . 16  |-  ( N  =  1  ->  (
( x  /L
N )  =  1  <-> 
( x  /L 1 )  =  1 ) )
2825, 27syl5ibrcom 156 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( N  =  1  ->  ( x  /L N )  =  1 ) )
2923, 28sylbid 149 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  gcd 
N )  =  1  ->  ( x  /L N )  =  1 ) )
3017, 29sylbid 149 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =/=  0  ->  ( x  /L N )  =  1 ) )
3130imp 123 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
x  /L N )  =  1 )
3231oveq1d 5868 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( 1  x.  ( 0  /L N ) ) )
335ad2antrr 485 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  N  e.  ZZ )
34 lgscl 13709 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  /L
N )  e.  ZZ )
3514, 33, 34sylancr 412 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  e.  ZZ )
3635zcnd 9335 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  e.  CC )
3736mulid2d 7938 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
1  x.  ( 0  /L N ) )  =  ( 0  /L N ) )
3832, 37eqtr2d 2204 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  x  e.  ZZ )  /\  ( 0  /L N )  =/=  0 )  ->  (
0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L N ) ) )
3914, 15, 34sylancr 412 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  /L
N )  e.  ZZ )
40 zdceq 9287 . . . . . . . . . . . 12  |-  ( ( ( 0  /L
N )  e.  ZZ  /\  0  e.  ZZ )  -> DECID 
( 0  /L
N )  =  0 )
4139, 14, 40sylancl 411 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  -> DECID  ( 0  /L N )  =  0 )
42 dcne 2351 . . . . . . . . . . 11  |-  (DECID  ( 0  /L N )  =  0  <->  ( (
0  /L N )  =  0  \/  ( 0  /L
N )  =/=  0
) )
4341, 42sylib 121 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( 0  /L N )  =  0  \/  ( 0  /L N )  =/=  0 ) )
4413, 38, 43mpjaodan 793 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) ) )
4544ralrimiva 2543 . . . . . . . 8  |-  ( N  e.  NN0  ->  A. x  e.  ZZ  ( 0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L
N ) ) )
46453ad2ant3 1015 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A. x  e.  ZZ  ( 0  /L N )  =  ( ( x  /L N )  x.  ( 0  /L
N ) ) )
47 simp2 993 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  B  e.  ZZ )
483, 46, 47rspcdva 2839 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) )
4948adantr 274 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  =  ( ( B  /L N )  x.  ( 0  /L
N ) ) )
5053ad2ant3 1015 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  N  e.  ZZ )
5114, 50, 34sylancr 412 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  e.  ZZ )
5251zcnd 9335 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  e.  CC )
5352adantr 274 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  e.  CC )
54 lgscl 13709 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B  /L
N )  e.  ZZ )
5547, 50, 54syl2anc 409 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( B  /L N )  e.  ZZ )
5655zcnd 9335 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( B  /L N )  e.  CC )
5756adantr 274 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( B  /L N )  e.  CC )
5853, 57mulcomd 7941 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( 0  /L N )  x.  ( B  /L N ) )  =  ( ( B  /L N )  x.  ( 0  /L N ) ) )
5949, 58eqtr4d 2206 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( 0  /L N )  =  ( ( 0  /L N )  x.  ( B  /L
N ) ) )
60 oveq1 5860 . . . . . 6  |-  ( A  =  0  ->  ( A  x.  B )  =  ( 0  x.  B ) )
61 zcn 9217 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
62613ad2ant2 1014 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  B  e.  CC )
6362mul02d 8311 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  x.  B )  =  0 )
6460, 63sylan9eqr 2225 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( A  x.  B )  =  0 )
6564oveq1d 5868 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( 0  /L
N ) )
66 simpr 109 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  A  =  0 )
6766oveq1d 5868 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( A  /L N )  =  ( 0  /L
N ) )
6867oveq1d 5868 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( ( 0  /L N )  x.  ( B  /L N ) ) )
6959, 65, 683eqtr4d 2213 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  A  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
70 oveq1 5860 . . . . . . . 8  |-  ( x  =  A  ->  (
x  /L N )  =  ( A  /L N ) )
7170oveq1d 5868 . . . . . . 7  |-  ( x  =  A  ->  (
( x  /L
N )  x.  (
0  /L N ) )  =  ( ( A  /L
N )  x.  (
0  /L N ) ) )
7271eqeq2d 2182 . . . . . 6  |-  ( x  =  A  ->  (
( 0  /L
N )  =  ( ( x  /L
N )  x.  (
0  /L N ) )  <->  ( 0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) ) )
73 simp1 992 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  ZZ )
7472, 46, 73rspcdva 2839 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) )
7574adantr 274 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( 0  /L N )  =  ( ( A  /L N )  x.  ( 0  /L
N ) ) )
76 oveq2 5861 . . . . . 6  |-  ( B  =  0  ->  ( A  x.  B )  =  ( A  x.  0 ) )
7773zcnd 9335 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  A  e.  CC )
7877mul01d 8312 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( A  x.  0 )  =  0 )
7976, 78sylan9eqr 2225 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( A  x.  B )  =  0 )
8079oveq1d 5868 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( 0  /L
N ) )
81 simpr 109 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  B  =  0 )
8281oveq1d 5868 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( B  /L N )  =  ( 0  /L
N ) )
8382oveq2d 5869 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( ( A  /L N )  x.  ( 0  /L N ) ) )
8475, 80, 833eqtr4d 2213 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  B  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
8569, 84jaodan 792 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  ( A  =  0  \/  B  =  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
86 neanior 2427 . . 3  |-  ( ( A  =/=  0  /\  B  =/=  0 )  <->  -.  ( A  =  0  \/  B  =  0 ) )
87 lgsdir 13730 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
885, 87syl3anl3 1283 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
8986, 88sylan2br 286 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  /\  -.  ( A  =  0  \/  B  =  0 ) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
90 zdceq 9287 . . . . 5  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  =  0 )
9173, 14, 90sylancl 411 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  A  =  0
)
92 zdceq 9287 . . . . 5  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
9347, 14, 92sylancl 411 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  B  =  0
)
94 dcor 930 . . . 4  |-  (DECID  A  =  0  ->  (DECID  B  = 
0  -> DECID  ( A  =  0  \/  B  =  0 ) ) )
9591, 93, 94sylc 62 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  -> DECID  ( A  =  0  \/  B  =  0 ) )
96 exmiddc 831 . . 3  |-  (DECID  ( A  =  0  \/  B  =  0 )  -> 
( ( A  =  0  \/  B  =  0 )  \/  -.  ( A  =  0  \/  B  =  0
) ) )
9795, 96syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  =  0  \/  B  =  0 )  \/  -.  ( A  =  0  \/  B  =  0 ) ) )
9885, 89, 97mpjaodan 793 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    x. cmul 7779   NN0cn0 9135   ZZcz 9212    gcd cgcd 11897    /Lclgs 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165  df-pc 12239  df-lgs 13693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator