ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdinn0 Unicode version

Theorem lgsdinn0 13743
Description: Variation on lgsdi 13732 valid for all  M ,  N but only for positive  A. (The exact location of the failure of this law is for  A  =  -u
1,  M  =  0, and some  N in which case  ( -u 1  /L 0 )  =  1 but  ( -u 1  /L N )  = 
-u 1 when  -u 1 is not a quadratic residue mod  N.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )

Proof of Theorem lgsdinn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . . . . . 9  |-  ( x  =  N  ->  ( A  /L x )  =  ( A  /L N ) )
21oveq1d 5868 . . . . . . . 8  |-  ( x  =  N  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
32eqeq2d 2182 . . . . . . 7  |-  ( x  =  N  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) ) )
4 sq1 10569 . . . . . . . . . . . . . . . . 17  |-  ( 1 ^ 2 )  =  1
54eqeq2i 2181 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  ( A ^ 2 )  =  1 )
6 nn0re 9144 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  A  e.  RR )
7 nn0ge0 9160 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  0  <_  A )
8 1re 7919 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
9 0le1 8400 . . . . . . . . . . . . . . . . . . 19  |-  0  <_  1
10 sq11 10548 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
118, 9, 10mpanr12 437 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
126, 7, 11syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
1312adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
145, 13bitr3id 193 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  <-> 
A  =  1 ) )
1514biimpa 294 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  = 
1 )
1615oveq1d 5868 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  ( 1  /L
x ) )
17 1lgs 13738 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
1  /L x )  =  1 )
1817ad2antlr 486 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  /L x )  =  1 )
1916, 18eqtrd 2203 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  1 )
2019oveq1d 5868 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( 1  x.  ( A  /L 0 ) ) )
21 nn0z 9232 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2221ad2antrr 485 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  e.  ZZ )
23 0z 9223 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
24 lgscl 13709 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
2522, 23, 24sylancl 411 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  ZZ )
2625zcnd 9335 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  CC )
2726mulid2d 7938 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( A  /L 0 ) )  =  ( A  /L 0 ) )
2820, 27eqtr2d 2204 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
29 lgscl 13709 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3021, 29sylan 281 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3130zcnd 9335 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  CC )
3231adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L x )  e.  CC )
3332mul01d 8312 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  0 )  =  0 )
3421adantr 274 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  A  e.  ZZ )
35 lgs0 13708 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
3634, 35syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
37 ifnefalse 3537 . . . . . . . . . . . . 13  |-  ( ( A ^ 2 )  =/=  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3836, 37sylan9eq 2223 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  0 )
3938oveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( ( A  /L x )  x.  0 ) )
4033, 39, 383eqtr4rd 2214 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
41 zsqcl 10546 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
4234, 41syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A ^ 2 )  e.  ZZ )
43 1z 9238 . . . . . . . . . . . 12  |-  1  e.  ZZ
44 zdceq 9287 . . . . . . . . . . . 12  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
4542, 43, 44sylancl 411 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
46 dcne 2351 . . . . . . . . . . 11  |-  (DECID  ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  =  1  \/  ( A ^ 2 )  =/=  1 ) )
4745, 46sylib 121 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  \/  ( A ^
2 )  =/=  1
) )
4828, 40, 47mpjaodan 793 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) ) )
4948ralrimiva 2543 . . . . . . . 8  |-  ( A  e.  NN0  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
50493ad2ant1 1013 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
51 simp3 994 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
523, 50, 51rspcdva 2839 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
5352adantr 274 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
54213ad2ant1 1013 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ZZ )
5554, 23, 24sylancl 411 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
5655zcnd 9335 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  CC )
5756adantr 274 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  e.  CC )
58 lgscl 13709 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
5954, 51, 58syl2anc 409 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  ZZ )
6059zcnd 9335 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  CC )
6160adantr 274 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L N )  e.  CC )
6257, 61mulcomd 7941 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L 0 )  x.  ( A  /L N ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
6353, 62eqtr4d 2206 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L 0 )  x.  ( A  /L
N ) ) )
64 oveq1 5860 . . . . . 6  |-  ( M  =  0  ->  ( M  x.  N )  =  ( 0  x.  N ) )
6551zcnd 9335 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
6665mul02d 8311 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  x.  N )  =  0 )
6764, 66sylan9eqr 2225 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  x.  N )  =  0 )
6867oveq2d 5869 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
69 simpr 109 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  M  = 
0 )
7069oveq2d 5869 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L M )  =  ( A  /L 0 ) )
7170oveq1d 5868 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L 0 )  x.  ( A  /L N ) ) )
7263, 68, 713eqtr4d 2213 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
73 oveq2 5861 . . . . . . . 8  |-  ( x  =  M  ->  ( A  /L x )  =  ( A  /L M ) )
7473oveq1d 5868 . . . . . . 7  |-  ( x  =  M  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7574eqeq2d 2182 . . . . . 6  |-  ( x  =  M  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) ) )
76 simp2 993 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
7775, 50, 76rspcdva 2839 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7877adantr 274 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
79 oveq2 5861 . . . . . 6  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
8076zcnd 9335 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
8180mul01d 8312 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
8279, 81sylan9eqr 2225 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( M  x.  N )  =  0 )
8382oveq2d 5869 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
84 simpr 109 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  N  = 
0 )
8584oveq2d 5869 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L N )  =  ( A  /L 0 ) )
8685oveq2d 5869 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
8778, 83, 863eqtr4d 2213 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
8872, 87jaodan 792 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
89 neanior 2427 . . 3  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
90 lgsdi 13732 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9121, 90syl3anl1 1281 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9289, 91sylan2br 286 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( A  /L
( M  x.  N
) )  =  ( ( A  /L
M )  x.  ( A  /L N ) ) )
93 zdceq 9287 . . . . 5  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
9476, 23, 93sylancl 411 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  =  0
)
95 zdceq 9287 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9651, 23, 95sylancl 411 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0
)
97 dcor 930 . . . 4  |-  (DECID  M  =  0  ->  (DECID  N  = 
0  -> DECID  ( M  =  0  \/  N  =  0 ) ) )
9894, 96, 97sylc 62 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
99 exmiddc 831 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
10098, 99syl 14 . 2  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
10188, 92, 100mpjaodan 793 1  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   ifcif 3526   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779    <_ cle 7955   2c2 8929   NN0cn0 9135   ZZcz 9212   ^cexp 10475    /Lclgs 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165  df-pc 12239  df-lgs 13693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator