ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdinn0 Unicode version

Theorem lgsdinn0 15727
Description: Variation on lgsdi 15716 valid for all  M ,  N but only for positive  A. (The exact location of the failure of this law is for  A  =  -u
1,  M  =  0, and some  N in which case  ( -u 1  /L 0 )  =  1 but  ( -u 1  /L N )  = 
-u 1 when  -u 1 is not a quadratic residue mod  N.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )

Proof of Theorem lgsdinn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 6009 . . . . . . . . 9  |-  ( x  =  N  ->  ( A  /L x )  =  ( A  /L N ) )
21oveq1d 6016 . . . . . . . 8  |-  ( x  =  N  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
32eqeq2d 2241 . . . . . . 7  |-  ( x  =  N  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) ) )
4 sq1 10855 . . . . . . . . . . . . . . . . 17  |-  ( 1 ^ 2 )  =  1
54eqeq2i 2240 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  ( A ^ 2 )  =  1 )
6 nn0re 9378 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  A  e.  RR )
7 nn0ge0 9394 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  0  <_  A )
8 1re 8145 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
9 0le1 8628 . . . . . . . . . . . . . . . . . . 19  |-  0  <_  1
10 sq11 10834 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
118, 9, 10mpanr12 439 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
126, 7, 11syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
1312adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
145, 13bitr3id 194 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  <-> 
A  =  1 ) )
1514biimpa 296 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  = 
1 )
1615oveq1d 6016 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  ( 1  /L
x ) )
17 1lgs 15722 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
1  /L x )  =  1 )
1817ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  /L x )  =  1 )
1916, 18eqtrd 2262 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  1 )
2019oveq1d 6016 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( 1  x.  ( A  /L 0 ) ) )
21 nn0z 9466 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2221ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  e.  ZZ )
23 0z 9457 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
24 lgscl 15693 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
2522, 23, 24sylancl 413 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  ZZ )
2625zcnd 9570 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  CC )
2726mulid2d 8165 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( A  /L 0 ) )  =  ( A  /L 0 ) )
2820, 27eqtr2d 2263 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
29 lgscl 15693 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3021, 29sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3130zcnd 9570 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  CC )
3231adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L x )  e.  CC )
3332mul01d 8539 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  0 )  =  0 )
3421adantr 276 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  A  e.  ZZ )
35 lgs0 15692 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
3634, 35syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
37 ifnefalse 3613 . . . . . . . . . . . . 13  |-  ( ( A ^ 2 )  =/=  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3836, 37sylan9eq 2282 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  0 )
3938oveq2d 6017 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( ( A  /L x )  x.  0 ) )
4033, 39, 383eqtr4rd 2273 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
41 zsqcl 10832 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
4234, 41syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A ^ 2 )  e.  ZZ )
43 1z 9472 . . . . . . . . . . . 12  |-  1  e.  ZZ
44 zdceq 9522 . . . . . . . . . . . 12  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
4542, 43, 44sylancl 413 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
46 dcne 2411 . . . . . . . . . . 11  |-  (DECID  ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  =  1  \/  ( A ^ 2 )  =/=  1 ) )
4745, 46sylib 122 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  \/  ( A ^
2 )  =/=  1
) )
4828, 40, 47mpjaodan 803 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) ) )
4948ralrimiva 2603 . . . . . . . 8  |-  ( A  e.  NN0  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
50493ad2ant1 1042 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
51 simp3 1023 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
523, 50, 51rspcdva 2912 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
5352adantr 276 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
54213ad2ant1 1042 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ZZ )
5554, 23, 24sylancl 413 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
5655zcnd 9570 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  CC )
5756adantr 276 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  e.  CC )
58 lgscl 15693 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
5954, 51, 58syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  ZZ )
6059zcnd 9570 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  CC )
6160adantr 276 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L N )  e.  CC )
6257, 61mulcomd 8168 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L 0 )  x.  ( A  /L N ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
6353, 62eqtr4d 2265 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L 0 )  x.  ( A  /L
N ) ) )
64 oveq1 6008 . . . . . 6  |-  ( M  =  0  ->  ( M  x.  N )  =  ( 0  x.  N ) )
6551zcnd 9570 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
6665mul02d 8538 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  x.  N )  =  0 )
6764, 66sylan9eqr 2284 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  x.  N )  =  0 )
6867oveq2d 6017 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
69 simpr 110 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  M  = 
0 )
7069oveq2d 6017 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L M )  =  ( A  /L 0 ) )
7170oveq1d 6016 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L 0 )  x.  ( A  /L N ) ) )
7263, 68, 713eqtr4d 2272 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
73 oveq2 6009 . . . . . . . 8  |-  ( x  =  M  ->  ( A  /L x )  =  ( A  /L M ) )
7473oveq1d 6016 . . . . . . 7  |-  ( x  =  M  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7574eqeq2d 2241 . . . . . 6  |-  ( x  =  M  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) ) )
76 simp2 1022 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
7775, 50, 76rspcdva 2912 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7877adantr 276 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
79 oveq2 6009 . . . . . 6  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
8076zcnd 9570 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
8180mul01d 8539 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
8279, 81sylan9eqr 2284 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( M  x.  N )  =  0 )
8382oveq2d 6017 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
84 simpr 110 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  N  = 
0 )
8584oveq2d 6017 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L N )  =  ( A  /L 0 ) )
8685oveq2d 6017 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
8778, 83, 863eqtr4d 2272 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
8872, 87jaodan 802 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
89 neanior 2487 . . 3  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
90 lgsdi 15716 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9121, 90syl3anl1 1319 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9289, 91sylan2br 288 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( A  /L
( M  x.  N
) )  =  ( ( A  /L
M )  x.  ( A  /L N ) ) )
93 zdceq 9522 . . . . 5  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
9476, 23, 93sylancl 413 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  =  0
)
95 zdceq 9522 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9651, 23, 95sylancl 413 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0
)
97 dcor 941 . . . 4  |-  (DECID  M  =  0  ->  (DECID  N  = 
0  -> DECID  ( M  =  0  \/  N  =  0 ) ) )
9894, 96, 97sylc 62 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
99 exmiddc 841 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
10098, 99syl 14 . 2  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
10188, 92, 100mpjaodan 803 1  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   ifcif 3602   class class class wbr 4083  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    x. cmul 8004    <_ cle 8182   2c2 9161   NN0cn0 9369   ZZcz 9446   ^cexp 10760    /Lclgs 15676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-2o 6563  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-proddc 12062  df-dvds 12299  df-gcd 12475  df-prm 12630  df-phi 12733  df-pc 12808  df-lgs 15677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator