ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdinn0 Unicode version

Theorem lgsdinn0 13549
Description: Variation on lgsdi 13538 valid for all  M ,  N but only for positive  A. (The exact location of the failure of this law is for  A  =  -u
1,  M  =  0, and some  N in which case  ( -u 1  /L 0 )  =  1 but  ( -u 1  /L N )  = 
-u 1 when  -u 1 is not a quadratic residue mod  N.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )

Proof of Theorem lgsdinn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 5849 . . . . . . . . 9  |-  ( x  =  N  ->  ( A  /L x )  =  ( A  /L N ) )
21oveq1d 5856 . . . . . . . 8  |-  ( x  =  N  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
32eqeq2d 2177 . . . . . . 7  |-  ( x  =  N  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) ) )
4 sq1 10544 . . . . . . . . . . . . . . . . 17  |-  ( 1 ^ 2 )  =  1
54eqeq2i 2176 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  ( A ^ 2 )  =  1 )
6 nn0re 9119 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  A  e.  RR )
7 nn0ge0 9135 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  0  <_  A )
8 1re 7894 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
9 0le1 8375 . . . . . . . . . . . . . . . . . . 19  |-  0  <_  1
10 sq11 10523 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
118, 9, 10mpanr12 436 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
126, 7, 11syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
1312adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
145, 13bitr3id 193 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  <-> 
A  =  1 ) )
1514biimpa 294 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  = 
1 )
1615oveq1d 5856 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  ( 1  /L
x ) )
17 1lgs 13544 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
1  /L x )  =  1 )
1817ad2antlr 481 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  /L x )  =  1 )
1916, 18eqtrd 2198 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  1 )
2019oveq1d 5856 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( 1  x.  ( A  /L 0 ) ) )
21 nn0z 9207 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2221ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  e.  ZZ )
23 0z 9198 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
24 lgscl 13515 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
2522, 23, 24sylancl 410 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  ZZ )
2625zcnd 9310 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  CC )
2726mulid2d 7913 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( A  /L 0 ) )  =  ( A  /L 0 ) )
2820, 27eqtr2d 2199 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
29 lgscl 13515 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3021, 29sylan 281 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3130zcnd 9310 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  CC )
3231adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L x )  e.  CC )
3332mul01d 8287 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  0 )  =  0 )
3421adantr 274 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  A  e.  ZZ )
35 lgs0 13514 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
3634, 35syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
37 ifnefalse 3530 . . . . . . . . . . . . 13  |-  ( ( A ^ 2 )  =/=  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3836, 37sylan9eq 2218 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  0 )
3938oveq2d 5857 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( ( A  /L x )  x.  0 ) )
4033, 39, 383eqtr4rd 2209 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
41 zsqcl 10521 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
4234, 41syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A ^ 2 )  e.  ZZ )
43 1z 9213 . . . . . . . . . . . 12  |-  1  e.  ZZ
44 zdceq 9262 . . . . . . . . . . . 12  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
4542, 43, 44sylancl 410 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
46 dcne 2346 . . . . . . . . . . 11  |-  (DECID  ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  =  1  \/  ( A ^ 2 )  =/=  1 ) )
4745, 46sylib 121 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  \/  ( A ^
2 )  =/=  1
) )
4828, 40, 47mpjaodan 788 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) ) )
4948ralrimiva 2538 . . . . . . . 8  |-  ( A  e.  NN0  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
50493ad2ant1 1008 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
51 simp3 989 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
523, 50, 51rspcdva 2834 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
5352adantr 274 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
54213ad2ant1 1008 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ZZ )
5554, 23, 24sylancl 410 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
5655zcnd 9310 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  CC )
5756adantr 274 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  e.  CC )
58 lgscl 13515 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
5954, 51, 58syl2anc 409 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  ZZ )
6059zcnd 9310 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  CC )
6160adantr 274 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L N )  e.  CC )
6257, 61mulcomd 7916 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L 0 )  x.  ( A  /L N ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
6353, 62eqtr4d 2201 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L 0 )  x.  ( A  /L
N ) ) )
64 oveq1 5848 . . . . . 6  |-  ( M  =  0  ->  ( M  x.  N )  =  ( 0  x.  N ) )
6551zcnd 9310 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
6665mul02d 8286 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  x.  N )  =  0 )
6764, 66sylan9eqr 2220 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  x.  N )  =  0 )
6867oveq2d 5857 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
69 simpr 109 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  M  = 
0 )
7069oveq2d 5857 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L M )  =  ( A  /L 0 ) )
7170oveq1d 5856 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L 0 )  x.  ( A  /L N ) ) )
7263, 68, 713eqtr4d 2208 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
73 oveq2 5849 . . . . . . . 8  |-  ( x  =  M  ->  ( A  /L x )  =  ( A  /L M ) )
7473oveq1d 5856 . . . . . . 7  |-  ( x  =  M  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7574eqeq2d 2177 . . . . . 6  |-  ( x  =  M  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) ) )
76 simp2 988 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
7775, 50, 76rspcdva 2834 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7877adantr 274 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
79 oveq2 5849 . . . . . 6  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
8076zcnd 9310 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
8180mul01d 8287 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
8279, 81sylan9eqr 2220 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( M  x.  N )  =  0 )
8382oveq2d 5857 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
84 simpr 109 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  N  = 
0 )
8584oveq2d 5857 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L N )  =  ( A  /L 0 ) )
8685oveq2d 5857 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
8778, 83, 863eqtr4d 2208 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
8872, 87jaodan 787 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
89 neanior 2422 . . 3  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
90 lgsdi 13538 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9121, 90syl3anl1 1276 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9289, 91sylan2br 286 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( A  /L
( M  x.  N
) )  =  ( ( A  /L
M )  x.  ( A  /L N ) ) )
93 zdceq 9262 . . . . 5  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
9476, 23, 93sylancl 410 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  =  0
)
95 zdceq 9262 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9651, 23, 95sylancl 410 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0
)
97 dcor 925 . . . 4  |-  (DECID  M  =  0  ->  (DECID  N  = 
0  -> DECID  ( M  =  0  \/  N  =  0 ) ) )
9894, 96, 97sylc 62 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
99 exmiddc 826 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
10098, 99syl 14 . 2  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
10188, 92, 100mpjaodan 788 1  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2335   A.wral 2443   ifcif 3519   class class class wbr 3981  (class class class)co 5841   CCcc 7747   RRcr 7748   0cc0 7749   1c1 7750    x. cmul 7754    <_ cle 7930   2c2 8904   NN0cn0 9110   ZZcz 9187   ^cexp 10450    /Lclgs 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-frec 6355  df-1o 6380  df-2o 6381  df-oadd 6384  df-er 6497  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-9 8919  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-ihash 10685  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-clim 11216  df-proddc 11488  df-dvds 11724  df-gcd 11872  df-prm 12036  df-phi 12139  df-pc 12213  df-lgs 13499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator