ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdinn0 Unicode version

Theorem lgsdinn0 15640
Description: Variation on lgsdi 15629 valid for all  M ,  N but only for positive  A. (The exact location of the failure of this law is for  A  =  -u
1,  M  =  0, and some  N in which case  ( -u 1  /L 0 )  =  1 but  ( -u 1  /L N )  = 
-u 1 when  -u 1 is not a quadratic residue mod  N.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )

Proof of Theorem lgsdinn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . . . . 9  |-  ( x  =  N  ->  ( A  /L x )  =  ( A  /L N ) )
21oveq1d 5982 . . . . . . . 8  |-  ( x  =  N  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
32eqeq2d 2219 . . . . . . 7  |-  ( x  =  N  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) ) )
4 sq1 10815 . . . . . . . . . . . . . . . . 17  |-  ( 1 ^ 2 )  =  1
54eqeq2i 2218 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  ( A ^ 2 )  =  1 )
6 nn0re 9339 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  A  e.  RR )
7 nn0ge0 9355 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  0  <_  A )
8 1re 8106 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
9 0le1 8589 . . . . . . . . . . . . . . . . . . 19  |-  0  <_  1
10 sq11 10794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
118, 9, 10mpanr12 439 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
126, 7, 11syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
1312adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
145, 13bitr3id 194 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  <-> 
A  =  1 ) )
1514biimpa 296 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  = 
1 )
1615oveq1d 5982 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  ( 1  /L
x ) )
17 1lgs 15635 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
1  /L x )  =  1 )
1817ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  /L x )  =  1 )
1916, 18eqtrd 2240 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  1 )
2019oveq1d 5982 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( 1  x.  ( A  /L 0 ) ) )
21 nn0z 9427 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2221ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  e.  ZZ )
23 0z 9418 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
24 lgscl 15606 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
2522, 23, 24sylancl 413 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  ZZ )
2625zcnd 9531 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  CC )
2726mulid2d 8126 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( A  /L 0 ) )  =  ( A  /L 0 ) )
2820, 27eqtr2d 2241 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
29 lgscl 15606 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3021, 29sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3130zcnd 9531 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  CC )
3231adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L x )  e.  CC )
3332mul01d 8500 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  0 )  =  0 )
3421adantr 276 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  A  e.  ZZ )
35 lgs0 15605 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
3634, 35syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
37 ifnefalse 3590 . . . . . . . . . . . . 13  |-  ( ( A ^ 2 )  =/=  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3836, 37sylan9eq 2260 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  0 )
3938oveq2d 5983 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( ( A  /L x )  x.  0 ) )
4033, 39, 383eqtr4rd 2251 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
41 zsqcl 10792 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
4234, 41syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A ^ 2 )  e.  ZZ )
43 1z 9433 . . . . . . . . . . . 12  |-  1  e.  ZZ
44 zdceq 9483 . . . . . . . . . . . 12  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
4542, 43, 44sylancl 413 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
46 dcne 2389 . . . . . . . . . . 11  |-  (DECID  ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  =  1  \/  ( A ^ 2 )  =/=  1 ) )
4745, 46sylib 122 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  \/  ( A ^
2 )  =/=  1
) )
4828, 40, 47mpjaodan 800 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) ) )
4948ralrimiva 2581 . . . . . . . 8  |-  ( A  e.  NN0  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
50493ad2ant1 1021 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
51 simp3 1002 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
523, 50, 51rspcdva 2889 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
5352adantr 276 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
54213ad2ant1 1021 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ZZ )
5554, 23, 24sylancl 413 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
5655zcnd 9531 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  CC )
5756adantr 276 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  e.  CC )
58 lgscl 15606 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
5954, 51, 58syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  ZZ )
6059zcnd 9531 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  CC )
6160adantr 276 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L N )  e.  CC )
6257, 61mulcomd 8129 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L 0 )  x.  ( A  /L N ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
6353, 62eqtr4d 2243 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L 0 )  x.  ( A  /L
N ) ) )
64 oveq1 5974 . . . . . 6  |-  ( M  =  0  ->  ( M  x.  N )  =  ( 0  x.  N ) )
6551zcnd 9531 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
6665mul02d 8499 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  x.  N )  =  0 )
6764, 66sylan9eqr 2262 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  x.  N )  =  0 )
6867oveq2d 5983 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
69 simpr 110 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  M  = 
0 )
7069oveq2d 5983 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L M )  =  ( A  /L 0 ) )
7170oveq1d 5982 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L 0 )  x.  ( A  /L N ) ) )
7263, 68, 713eqtr4d 2250 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
73 oveq2 5975 . . . . . . . 8  |-  ( x  =  M  ->  ( A  /L x )  =  ( A  /L M ) )
7473oveq1d 5982 . . . . . . 7  |-  ( x  =  M  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7574eqeq2d 2219 . . . . . 6  |-  ( x  =  M  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) ) )
76 simp2 1001 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
7775, 50, 76rspcdva 2889 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7877adantr 276 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
79 oveq2 5975 . . . . . 6  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
8076zcnd 9531 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
8180mul01d 8500 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
8279, 81sylan9eqr 2262 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( M  x.  N )  =  0 )
8382oveq2d 5983 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
84 simpr 110 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  N  = 
0 )
8584oveq2d 5983 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L N )  =  ( A  /L 0 ) )
8685oveq2d 5983 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
8778, 83, 863eqtr4d 2250 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
8872, 87jaodan 799 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
89 neanior 2465 . . 3  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
90 lgsdi 15629 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9121, 90syl3anl1 1298 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9289, 91sylan2br 288 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( A  /L
( M  x.  N
) )  =  ( ( A  /L
M )  x.  ( A  /L N ) ) )
93 zdceq 9483 . . . . 5  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
9476, 23, 93sylancl 413 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  =  0
)
95 zdceq 9483 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9651, 23, 95sylancl 413 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0
)
97 dcor 938 . . . 4  |-  (DECID  M  =  0  ->  (DECID  N  = 
0  -> DECID  ( M  =  0  \/  N  =  0 ) ) )
9894, 96, 97sylc 62 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
99 exmiddc 838 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
10098, 99syl 14 . 2  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
10188, 92, 100mpjaodan 800 1  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   ifcif 3579   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965    <_ cle 8143   2c2 9122   NN0cn0 9330   ZZcz 9407   ^cexp 10720    /Lclgs 15589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-2o 6526  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-proddc 11977  df-dvds 12214  df-gcd 12390  df-prm 12545  df-phi 12648  df-pc 12723  df-lgs 15590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator