ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdinn0 Unicode version

Theorem lgsdinn0 15164
Description: Variation on lgsdi 15153 valid for all  M ,  N but only for positive  A. (The exact location of the failure of this law is for  A  =  -u
1,  M  =  0, and some  N in which case  ( -u 1  /L 0 )  =  1 but  ( -u 1  /L N )  = 
-u 1 when  -u 1 is not a quadratic residue mod  N.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdinn0  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )

Proof of Theorem lgsdinn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 5926 . . . . . . . . 9  |-  ( x  =  N  ->  ( A  /L x )  =  ( A  /L N ) )
21oveq1d 5933 . . . . . . . 8  |-  ( x  =  N  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
32eqeq2d 2205 . . . . . . 7  |-  ( x  =  N  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) ) )
4 sq1 10704 . . . . . . . . . . . . . . . . 17  |-  ( 1 ^ 2 )  =  1
54eqeq2i 2204 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  ( A ^ 2 )  =  1 )
6 nn0re 9249 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  A  e.  RR )
7 nn0ge0 9265 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN0  ->  0  <_  A )
8 1re 8018 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
9 0le1 8500 . . . . . . . . . . . . . . . . . . 19  |-  0  <_  1
10 sq11 10683 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
118, 9, 10mpanr12 439 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
126, 7, 11syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
1312adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  ( 1 ^ 2 )  <-> 
A  =  1 ) )
145, 13bitr3id 194 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  <-> 
A  =  1 ) )
1514biimpa 296 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  = 
1 )
1615oveq1d 5933 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  ( 1  /L
x ) )
17 1lgs 15159 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
1  /L x )  =  1 )
1817ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  /L x )  =  1 )
1916, 18eqtrd 2226 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L x )  =  1 )
2019oveq1d 5933 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( 1  x.  ( A  /L 0 ) ) )
21 nn0z 9337 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2221ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  A  e.  ZZ )
23 0z 9328 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
24 lgscl 15130 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
2522, 23, 24sylancl 413 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  ZZ )
2625zcnd 9440 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  e.  CC )
2726mulid2d 8038 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( A  /L 0 ) )  =  ( A  /L 0 ) )
2820, 27eqtr2d 2227 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =  1 )  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
29 lgscl 15130 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3021, 29sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  ZZ )
3130zcnd 9440 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L
x )  e.  CC )
3231adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L x )  e.  CC )
3332mul01d 8412 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  0 )  =  0 )
3421adantr 276 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  A  e.  ZZ )
35 lgs0 15129 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
3634, 35syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
37 ifnefalse 3568 . . . . . . . . . . . . 13  |-  ( ( A ^ 2 )  =/=  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3836, 37sylan9eq 2246 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  0 )
3938oveq2d 5934 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( ( A  /L x )  x.  ( A  /L 0 ) )  =  ( ( A  /L x )  x.  0 ) )
4033, 39, 383eqtr4rd 2237 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ZZ )  /\  ( A ^
2 )  =/=  1
)  ->  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
41 zsqcl 10681 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
4234, 41syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A ^ 2 )  e.  ZZ )
43 1z 9343 . . . . . . . . . . . 12  |-  1  e.  ZZ
44 zdceq 9392 . . . . . . . . . . . 12  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
4542, 43, 44sylancl 413 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
46 dcne 2375 . . . . . . . . . . 11  |-  (DECID  ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  =  1  \/  ( A ^ 2 )  =/=  1 ) )
4745, 46sylib 122 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( ( A ^
2 )  =  1  \/  ( A ^
2 )  =/=  1
) )
4828, 40, 47mpjaodan 799 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  x  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) ) )
4948ralrimiva 2567 . . . . . . . 8  |-  ( A  e.  NN0  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
50493ad2ant1 1020 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A. x  e.  ZZ  ( A  /L 0 )  =  ( ( A  /L x )  x.  ( A  /L 0 ) ) )
51 simp3 1001 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
523, 50, 51rspcdva 2869 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
5352adantr 276 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
54213ad2ant1 1020 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ZZ )
5554, 23, 24sylancl 413 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  ZZ )
5655zcnd 9440 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  e.  CC )
5756adantr 276 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  e.  CC )
58 lgscl 15130 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
5954, 51, 58syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  ZZ )
6059zcnd 9440 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  CC )
6160adantr 276 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L N )  e.  CC )
6257, 61mulcomd 8041 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L 0 )  x.  ( A  /L N ) )  =  ( ( A  /L N )  x.  ( A  /L 0 ) ) )
6353, 62eqtr4d 2229 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L 0 )  x.  ( A  /L
N ) ) )
64 oveq1 5925 . . . . . 6  |-  ( M  =  0  ->  ( M  x.  N )  =  ( 0  x.  N ) )
6551zcnd 9440 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
6665mul02d 8411 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  x.  N )  =  0 )
6764, 66sylan9eqr 2248 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  x.  N )  =  0 )
6867oveq2d 5934 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
69 simpr 110 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  M  = 
0 )
7069oveq2d 5934 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L M )  =  ( A  /L 0 ) )
7170oveq1d 5933 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L 0 )  x.  ( A  /L N ) ) )
7263, 68, 713eqtr4d 2236 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
73 oveq2 5926 . . . . . . . 8  |-  ( x  =  M  ->  ( A  /L x )  =  ( A  /L M ) )
7473oveq1d 5933 . . . . . . 7  |-  ( x  =  M  ->  (
( A  /L
x )  x.  ( A  /L 0 ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7574eqeq2d 2205 . . . . . 6  |-  ( x  =  M  ->  (
( A  /L 0 )  =  ( ( A  /L
x )  x.  ( A  /L 0 ) )  <->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) ) )
76 simp2 1000 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
7775, 50, 76rspcdva 2869 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
7877adantr 276 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L 0 )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
79 oveq2 5926 . . . . . 6  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
8076zcnd 9440 . . . . . . 7  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
8180mul01d 8412 . . . . . 6  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  0 )  =  0 )
8279, 81sylan9eqr 2248 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( M  x.  N )  =  0 )
8382oveq2d 5934 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( A  /L 0 ) )
84 simpr 110 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  N  = 
0 )
8584oveq2d 5934 . . . . 5  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L N )  =  ( A  /L 0 ) )
8685oveq2d 5934 . . . 4  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( A  /L M )  x.  ( A  /L N ) )  =  ( ( A  /L M )  x.  ( A  /L 0 ) ) )
8778, 83, 863eqtr4d 2236 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L
N ) ) )
8872, 87jaodan 798 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
89 neanior 2451 . . 3  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
90 lgsdi 15153 . . . 4  |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9121, 90syl3anl1 1297 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0
) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
9289, 91sylan2br 288 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( A  /L
( M  x.  N
) )  =  ( ( A  /L
M )  x.  ( A  /L N ) ) )
93 zdceq 9392 . . . . 5  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
9476, 23, 93sylancl 413 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  =  0
)
95 zdceq 9392 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9651, 23, 95sylancl 413 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0
)
97 dcor 937 . . . 4  |-  (DECID  M  =  0  ->  (DECID  N  = 
0  -> DECID  ( M  =  0  \/  N  =  0 ) ) )
9894, 96, 97sylc 62 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
99 exmiddc 837 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
10098, 99syl 14 . 2  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
10188, 92, 100mpjaodan 799 1  |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   ifcif 3557   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    x. cmul 7877    <_ cle 8055   2c2 9033   NN0cn0 9240   ZZcz 9317   ^cexp 10609    /Lclgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator